当前位置: X-MOL 学术Astrophys. J.  › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
From Supernova to Supernova Remnant: Comparison of Thermonuclear Explosion Models
The Astrophysical Journal ( IF 4.8 ) Pub Date : 2021-01-12 , DOI: 10.3847/1538-4357/abc951
Gilles Ferrand 1, 2 , Donald C. Warren 2 , Masaomi Ono 1, 2 , Shigehiro Nagataki 1, 2 , Friedrich K. Rpke 3, 4 , Ivo R. Seitenzahl 5 , Florian Lach 3, 4 , Hiroyoshi Iwasaki 6, 7 , Toshiki Sato 8, 9, 10
Affiliation  

Progress in the three-dimensional modeling of supernovae (SN) prompts us to revisit the supernova remnant (SNR) phase. We continue our study of the imprint of a thermonuclear explosion on the SNR it produces, that we started with a delayed-detonation model of a Chandrasekhar-mass white dwarf. Here we compare two different types of explosion models, each with two variants: two delayed detonation models (N100ddt, N5ddt) and two pure deflagration models (N100def, N5def), where the N number parametrizes the ignition. The output of each SN simulation is used as input of a SNR simulation carried on until 500 yr after the explosion. While all SNR models become more spherical over time and overall display the theoretical structure expected for a young SNR, clear differences are visible amongst the models, depending on the geometry of the ignition and on the presence or not of detonation fronts. Compared to N100 models, N5 models have a strong dipole component, and produce asymmetric remnants. N5def produces a regular-looking, but offset remnant, while N5ddt produces a two-sided remnant. Pure deflagration models exhibit specific traits: a central over-density, because of the incomplete explosion, and a network of seam lines across the surface, boundaries between burning cells. Signatures from the SN dominate the morphology of the SNR up to 100 yr to 300 yr after the explosion, depending on the model, and are still measurable at 500 yr, which may provide a way of testing explosion models.

中文翻译:

从超新星到超新星遗迹:热核爆炸模型的比较

超新星 (SN) 三维建模的进展促使我们重新审视超新星遗迹 (SNR) 阶段。我们继续研究热核爆炸对其产生的 SNR 的影响,我们从钱德拉塞卡质量白矮星的延迟爆炸模型开始。在这里,我们比较了两种不同类型的爆炸模型,每种模型都有两种变体:两种延迟爆震模型(N100ddt、N5ddt)和两种纯爆燃模型(N100def、N5def),其中 N 数用于参数化点火。每个 SN 模拟的输出用作 SNR 模拟的输入,该模拟一直持续到爆炸后 500 年。虽然所有 SNR 模型随着时间的推移变得更加球形,并且总体上显示了年轻 SNR 预期的理论结构,但模型之间仍存在明显差异,取决于点火的几何形状和爆轰前沿的存在与否。与 N100 型号相比,N5 型号具有很强的偶极子分量,并会产生不对称的残余。N5def 产生看起来规则但偏移的残余,而 N5ddt 产生两侧残余。纯爆燃模型表现出特定的特征:由于不完全爆炸导致中心过度密度,以及跨越表面的接缝线网络,燃烧细胞之间的边界。SN 的特征在爆炸后长达 100 年至 300 年的 SNR 形态中占主导地位,具体取决于模型,并且在 500 年仍可测量,这可能提供一种测试爆炸模型的方法。N5def 产生看起来规则但偏移的残余,而 N5ddt 产生两侧残余。纯爆燃模型表现出特定的特征:由于不完全爆炸导致中心过度密度,以及跨越表面的接缝线网络,燃烧细胞之间的边界。SN 的特征在爆炸后长达 100 年至 300 年的 SNR 形态中占主导地位,具体取决于模型,并且在 500 年仍可测量,这可能提供一种测试爆炸模型的方法。N5def 产生看起来规则但偏移的残余,而 N5ddt 产生两侧残余。纯爆燃模型表现出特定的特征:由于不完全爆炸导致中心过度密度,以及跨越表面的接缝线网络,燃烧细胞之间的边界。SN 的特征在爆炸后长达 100 年至 300 年的 SNR 形态中占主导地位,具体取决于模型,并且在 500 年仍可测量,这可能提供一种测试爆炸模型的方法。
更新日期:2021-01-12
down
wechat
bug