当前位置: X-MOL 学术Astrophys. J.  › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Two-zone Photohadronic Interpretation of the EHBL-like Behavior of the 2016 Multi-TeV Flares of 1ES 1959+650
The Astrophysical Journal ( IF 4.8 ) Pub Date : 2021-01-12 , DOI: 10.3847/1538-4357/abc9c6
Sarira Sahu 1 , Carlos E. Lpez Fortn 1 , Luis H. Castaeda Hernndez 2 , Subhash Rajpoot 3
Affiliation  

The high-energy-peaked blazar 1ES 1959+650 is a well-known and well studied nearby blazar that has undergone several episodes of multi-TeV flaring. In 2002 for the first time an orphan TeV flare was observed from this blazar. During a multiwavelength campaign between 29th April to 21st November 2016, MAGIC telescopes observed multi-TeV flarings during the nights of 13th, 14th June and 1st July 2016 when the position of the synchrotron peak was found to be above $10^{17}$ Hz. Also observed was that the second peak of the spectral energy distribution shifted towards higher energy, and exhibiting extreme HBL-like behavior. The photohadronic model which is very successful in explaning the multi-TeV flaring from many high energy blazars including 1ES 1959+650 is applied to study the flaring events of 2016. It is observed that the photohadronic model is unable to explain the observed spectra. Here, we use a two-zone photohadronic model to explain the observed spectra. We clearly demonstrate that the low energy regime (zone-1) of the spectra corresponds to the standard flaring events of the high energy blazar and the high energy regime (zone-2) of the spectra are solely due to the extreme nature of the flaring events. Our two-zone photohadronic model explains very well the multi-TeV flaring events observed by MAGIC telescopes.

中文翻译:

1ES 1959+650 的 2016 年多 TeV 耀斑的类 EHBL 行为的两区光强子解释

高能量峰值耀变体 1ES 1959+650 是一个众所周知且经过充分研究的附近耀变体,它经历了几次多 TeV 耀斑。2002 年,首次从这个耀变体中观察到孤立的 TeV 耀斑。在 2016 年 4 月 29 日至 11 月 21 日的多波长活动中,MAGIC 望远镜在 2016 年 6 月 13 日、6 月 14 日和 7 月 1 日夜间观测到多 TeV 耀斑,当时发现同步加速器峰值的位置高于 $10^{17}$Hz . 还观察到光谱能量分布的第二个峰值向更高能量移动,并表现出极端的 HBL 样行为。光强子模型在解释包括 1ES 1959+650 在内的许多高能耀变体的多 TeV 耀斑方面非常成功,用于研究 2016 年的耀斑事件。据观察,光强子模型无法解释观察到的光谱。在这里,我们使用两区光强子模型来解释观察到的光谱。我们清楚地证明,光谱的低能区(区域 1)对应于高能耀变体的标准耀斑事件,而光谱的高能区(区 2)完全是由于耀斑的极端性质事件。我们的两区光强子模型很好地解释了 MAGIC 望远镜观测到的多 TeV 耀斑事件。我们清楚地证明,光谱的低能区(区域 1)对应于高能耀变体的标准耀斑事件,而光谱的高能区(区 2)完全是由于耀斑的极端性质事件。我们的两区光强子模型很好地解释了 MAGIC 望远镜观测到的多 TeV 耀斑事件。我们清楚地证明,光谱的低能区(区域 1)对应于高能耀变体的标准耀斑事件,而光谱的高能区(区 2)完全是由于耀斑的极端性质事件。我们的两区光强子模型很好地解释了 MAGIC 望远镜观测到的多 TeV 耀斑事件。
更新日期:2021-01-12
down
wechat
bug