当前位置: X-MOL 学术Astrophys. J.  › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The Formation and Eruption of a Sigmoidal Filament Driven by Rotating Network Magnetic Fields
The Astrophysical Journal ( IF 4.8 ) Pub Date : 2021-01-11 , DOI: 10.3847/1538-4357/abcaf4
Jun Dai 1, 2 , Haisheng Ji 1, 2 , Leping Li 3, 4 , Jun Zhang 3, 4 , Huadong Chen 3, 4
Affiliation  

We present the formation and eruption of a sigmoidal filament driven by rotating network magnetic fields (RNFs) near the center of the solar disk, which was observed by the one-meter aperture New Vacuum Solar Telescope (NVST) at Fuxian Solar Observatory (FSO) on 2018 July 12. Counterclockwise RNFs twist two small-scale filaments at their northeastern foot-point region, giving a rotation of nearly 200 degree within about 140 minutes. The motion of the RNF has a tendency to accelerate at first and then decelerate obviously, as the average rotation speed increased from 10 to 150 ,and then slowed down to 50 . Coalescence then occurs between filaments F1 and F2. Meanwhile the fine structures in the southwestern region of the filament was involved in another interaction of coalescence. The subsequent EUV brightening due to plasma heating is observed in the two interaction regions. These interacting structures, including F1, F2 and the fine structures in the southwestern region, eventually evolve into a larger-scale sigmoidal filament twisted in the same direction as the RNFs gave. The twist of the sigmoidal filament has exceeded 4{\pi} and the filament erupted finally. The motion of the sigmoidal filament keeps uniform until a nearby jet collides, causing the filament to erupt faster. These results provide evidence that RNF plays an important role in the formation and eruption of the sigmoidal filament. The phenomena also suggests that the kink instability is the trigger mechanism for the filament eruption.

中文翻译:

由旋转网络磁场驱动的 S 形灯丝的形成和喷发

我们展示了太阳盘中心附近由旋转网络磁场 (RNF) 驱动的 S 形灯丝的形成和喷发,这是由抚仙太阳天文台 (FSO) 的一米孔径新真空太阳望远镜 (NVST) 观测到的2018 年 7 月 12 日。逆时针 RNF 在其东北足点区域扭转两条小尺寸细丝,在大约 140 分钟内旋转近 200 度。RNF的运动有先加速后明显减速的趋势,平均转速从10 增加到150 ,然后减慢到50 。然后在长丝 F1 和 F2 之间发生聚结。同时,细丝西南区域的精细结构参与了另一种聚结相互作用。在两个相互作用区域中观察到由于等离子体加热导致的后续 EUV 增亮。这些相互作用的结构,包括 F1、F2 和西南地区的精细结构,最终演变成与 RNF 给出的方向相同的更大规模的 S 形细丝。sigmoidal细丝的扭曲超过了4{\pi},细丝终于爆发了。S形灯丝的运动保持均匀,直到附近的喷流发生碰撞,导致灯丝爆发得更快。这些结果提供了证据,证明 RNF 在 sigmoidal 细丝的形成和喷发中起着重要作用。该现象还表明,扭结不稳定性是细丝喷发的触发机制。F2 和西南地区的精细结构,最终演变成与 RNF 所给出的方向相同的更大规模的 S 形细丝。sigmoidal细丝的扭曲超过了4{\pi},细丝终于爆发了。S形灯丝的运动保持均匀,直到附近的喷流发生碰撞,导致灯丝爆发得更快。这些结果提供了证据,证明 RNF 在 sigmoidal 细丝的形成和喷发中起着重要作用。该现象还表明,扭结不稳定性是细丝喷发的触发机制。F2 和西南地区的精细结构,最终演变成与 RNF 所给出的方向相同的更大规模的 S 形细丝。sigmoidal细丝的扭曲超过了4{\pi},细丝终于爆发了。S形灯丝的运动保持均匀,直到附近的喷流发生碰撞,导致灯丝爆发得更快。这些结果提供了证据,证明 RNF 在 sigmoidal 细丝的形成和喷发中起着重要作用。该现象还表明,扭结不稳定性是细丝喷发的触发机制。S形灯丝的运动保持均匀,直到附近的喷流发生碰撞,导致灯丝爆发得更快。这些结果提供了证据,证明 RNF 在 sigmoidal 细丝的形成和喷发中起着重要作用。该现象还表明,扭结不稳定性是细丝喷发的触发机制。S形灯丝的运动保持均匀,直到附近的喷流发生碰撞,导致灯丝爆发得更快。这些结果提供了证据,证明 RNF 在 sigmoidal 细丝的形成和喷发中起着重要作用。该现象还表明,扭结不稳定性是细丝喷发的触发机制。
更新日期:2021-01-11
down
wechat
bug