当前位置: X-MOL 学术Metals › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Flow Stress Behaviour and Static Recrystallization Characteristics of Hot Deformed Austenite in Microalloyed Medium-Carbon Bainitic Steels
Metals ( IF 2.6 ) Pub Date : 2021-01-12 , DOI: 10.3390/met11010138
Pentti M. Kaikkonen , Mahesh C. Somani , Leo Pentti Karjalainen , Jukka I. Kömi

In the past decade, efforts have been focused on developing very fine, medium-carbon bainitic steels via the low-temperature (typically 300–400 °C) ausforming process, which not only enables shorter isothermal holding times for bainitic transformation at low temperatures, but also offers significantly improved strength. This paper describes static recrystallization (SRX) characteristics of austenite in four medium-carbon 2%Mn-1.3%Si-0.7%Cr steels with and without microalloying intended for the development of these steels. The stress-relaxation method on a Gleeble simulator resulted in recrystallization times over a wide range of temperatures, strains and strain rates. Also, the occurrence of precipitation was revealed. Powers of strain (−1.7 to −2.7) and strain rate (−0.21 to −0.28) as well as the apparent activation energies (225–269 kJ/mol) were in the ranges reported in the literature for C-Mn and microalloyed steels with lower Mn and Si contents. The new regression equations established for estimating times for 50% SRX revealed the retardation effects of microalloying and Mo addition showing reasonable fits with the experimental data, whereas the previous model suggested for ordinary microalloyed steels tended to predict clearly shorter times on average than the experimental values for the present coarse-grained steels. The Boratto equation to estimate the non-recrystallization temperature was successfully modified to include the effect of Mo alloying and high silicon concentrations.

中文翻译:

微合金化中碳贝氏体钢中热变形奥氏体的流变应力行为和静态再结晶特性

在过去的十年中,人们一直致力于通过低温(通常为300-400°C)的奥氏体成形工艺开发非常精细的中碳贝氏体钢,这不仅缩短了低温下贝氏体转变的等温保温时间,但强度也大大提高。本文介绍了四种中碳2%Mn-1.3%Si-0.7%Cr钢中奥氏体的静态再结晶(SRX)特性,这些钢具有和不具有用于开发这些钢的微合金。Gleeble仿真器上的应力松弛方法导致了在较大温度,应变和应变速率范围内的重结晶时间。另外,发现了沉淀的发生。应变能力(-1.7至-2.7)和应变率(-0.21至-0)。28)以及表观活化能(225-269 kJ / mol)均在文献中针对Mn和Si含量较低的C-Mn和微合金钢的范围内。建立用于估算50%SRX的时间的新回归方程式表明,微合金化和Mo添加的延迟效应显示出与实验数据的合理拟合,而先前的模型建议,对于普通微合金钢而言,平均时间明显比实验值短。对于目前的粗晶粒钢。成功地修改了用于估计非重结晶温度的Boratto方程,以包括Mo合金化和高硅浓度的影响。建立用于估算50%SRX的时间的新回归方程式表明,微合金化和Mo添加的延迟效应显示出与实验数据的合理拟合,而先前的模型建议,对于普通微合金钢而言,平均时间明显比实验值短。对于目前的粗晶粒钢。成功地修改了用于估计非重结晶温度的Boratto方程,以包括Mo合金化和高硅浓度的影响。建立用于估算50%SRX的时间的新回归方程式表明,微合金化和Mo添加的延迟效应显示出与实验数据的合理拟合,而先前的模型建议,对于普通微合金钢而言,平均时间明显比实验值短。对于目前的粗晶粒钢。成功地修改了用于估计非重结晶温度的Boratto方程,以包括Mo合金化和高硅浓度的影响。而先前建议的用于普通微合金钢的模型,其平均时间显然要比目前的粗晶粒钢的实验值明显短。成功地修改了用于估计非重结晶温度的Boratto方程,以包括Mo合金化和高硅浓度的影响。而先前建议的用于普通微合金钢的模型,其平均时间显然要比目前的粗晶粒钢的实验值明显短。成功地修改了用于估计非重结晶温度的Boratto方程,以包括Mo合金化和高硅浓度的影响。
更新日期:2021-01-12
down
wechat
bug