当前位置: X-MOL 学术Proc. Natl. Acad. Sci. U.S.A. › 论文详情
Deep learning and computer vision will transform entomology [Biological Sciences]
Proceedings of the National Academy of Sciences of the United States of America ( IF 9.412 ) Pub Date : 2021-01-12 , DOI: 10.1073/pnas.2002545117
Toke T. Høye, Johanna Ärje, Kim Bjerge, Oskar L. P. Hansen, Alexandros Iosifidis, Florian Leese, Hjalte M. R. Mann, Kristian Meissner, Claus Melvad, Jenni Raitoharju

Most animal species on Earth are insects, and recent reports suggest that their abundance is in drastic decline. Although these reports come from a wide range of insect taxa and regions, the evidence to assess the extent of the phenomenon is sparse. Insect populations are challenging to study, and most monitoring methods are labor intensive and inefficient. Advances in computer vision and deep learning provide potential new solutions to this global challenge. Cameras and other sensors can effectively, continuously, and noninvasively perform entomological observations throughout diurnal and seasonal cycles. The physical appearance of specimens can also be captured by automated imaging in the laboratory. When trained on these data, deep learning models can provide estimates of insect abundance, biomass, and diversity. Further, deep learning models can quantify variation in phenotypic traits, behavior, and interactions. Here, we connect recent developments in deep learning and computer vision to the urgent demand for more cost-efficient monitoring of insects and other invertebrates. We present examples of sensor-based monitoring of insects. We show how deep learning tools can be applied to exceptionally large datasets to derive ecological information and discuss the challenges that lie ahead for the implementation of such solutions in entomology. We identify four focal areas, which will facilitate this transformation: 1) validation of image-based taxonomic identification; 2) generation of sufficient training data; 3) development of public, curated reference databases; and 4) solutions to integrate deep learning and molecular tools.



中文翻译:

深度学习和计算机视觉将改变昆虫学[生物科学]

地球上的大多数动物都是昆虫,最近的报道表明它们的丰富度正在急剧下降。尽管这些报道来自各种各样的昆虫类群和地区,但是评估这种现象的程度的证据很少。昆虫种群的研究具有挑战性,大多数监测方法劳动强度大且效率低下。计算机视觉和深度学习的进步为应对这一全球挑战提供了潜在的新解决方案。相机和其他传感器可以在整个昼夜和季节周期内有效,连续且无创地进行昆虫学观察。标本的物理外观还可以通过实验室中的自动成像来捕获。在对这些数据进行训练后,深度学习模型可以提供昆虫丰度,生物量和多样性的估计。进一步,深度学习模型可以量化表型特征,行为和相互作用的变化。在这里,我们将深度学习和计算机视觉的最新发展与对昆虫和其他无脊椎动物的更具成本效益的监测的迫切需求联系在一起。我们介绍了基于传感器的昆虫监测实例。我们将展示如何将深度学习工具应用于超大型数据集以获取生态信息,并讨论在昆虫学中实施此类解决方案所面临的挑战。我们确定了四个重点领域,这将促进这一转变:1)验证基于图像的分类识别;2)生成足够的训练数据;3)开发公共的参考数据库;和4)整合深度学习和分子工具的解决方案。

更新日期:2021-01-12
全部期刊列表>>
微生物研究
虚拟特刊
亚洲大洋洲地球科学
NPJ欢迎投稿
自然科研论文编辑
ERIS期刊投稿
欢迎阅读创刊号
自然职场,为您触达千万科研人才
spring&清华大学出版社
城市可持续发展前沿研究专辑
Springer 纳米技术权威期刊征稿
全球视野覆盖
施普林格·自然新
chemistry
物理学研究前沿热点精选期刊推荐
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
阿拉丁试剂right
上海中医药大学
浙江大学
西湖大学
化学所
北京大学
山东大学
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
南方科技大学
南开大学
清华大学
天合科研
x-mol收录
试剂库存
down
wechat
bug