当前位置: X-MOL 学术Proc. Natl. Acad. Sci. U.S.A. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Invariant timescale hierarchy across the cortical somatosensory network [Neuroscience]
Proceedings of the National Academy of Sciences of the United States of America ( IF 11.1 ) Pub Date : 2021-01-19 , DOI: 10.1073/pnas.2021843118
Román Rossi-Pool 1 , Antonio Zainos 2 , Manuel Alvarez 2 , Sergio Parra 2 , Jerónimo Zizumbo 2 , Ranulfo Romo 1, 3
Affiliation  

The ability of cortical networks to integrate information from different sources is essential for cognitive processes. On one hand, sensory areas exhibit fast dynamics often phase-locked to stimulation; on the other hand, frontal lobe areas with slow response latencies to stimuli must integrate and maintain information for longer periods. Thus, cortical areas may require different timescales depending on their functional role. Studying the cortical somatosensory network while monkeys discriminated between two vibrotactile stimulus patterns, we found that a hierarchical order could be established across cortical areas based on their intrinsic timescales. Further, even though subareas (areas 3b, 1, and 2) of the primary somatosensory (S1) cortex exhibit analogous firing rate responses, a clear differentiation was observed in their timescales. Importantly, we observed that this inherent timescale hierarchy was invariant between task contexts (demanding vs. nondemanding). Even if task context severely affected neural coding in cortical areas downstream to S1, their timescales remained unaffected. Moreover, we found that these time constants were invariant across neurons with different latencies or coding. Although neurons had completely different dynamics, they all exhibited comparable timescales within each cortical area. Our results suggest that this measure is demonstrative of an inherent characteristic of each cortical area, is not a dynamical feature of individual neurons, and does not depend on task demands.



中文翻译:

皮层体感网络的不变时间尺度层次[神经科学]

皮层网络整合来自不同来源的信息的能力对于认知过程至关重要。一方面,感觉区域表现出快速动态,通常与刺激锁相;另一方面,对刺激反应迟缓的额叶区域必须更长时间地整合和维持信息。因此,皮质区域可能需要不同的时间尺度,具体取决于它们的功能作用。当猴子区分两种振动触觉刺激模式时研究皮层体感网络,我们发现可以根据其内在时间尺度跨皮层区域建立等级顺序。此外,尽管初级体感 (S1) 皮层的子区域(区域 3b、1 和 2)表现出类似的放电率反应,但在它们的时间尺度上观察到明显的差异。重要的是,我们观察到这种固有的时间尺度层次结构在任务上下文(要求与非要求)之间是不变的。即使任务上下文严重影响了 S1 下游皮质区域的神经编码,它们的时间尺度仍然不受影响。此外,我们发现这些时间常数在具有不同延迟或编码的神经元之间是不变的。尽管神经元具有完全不同的动力学,但它们在每个皮层区域内都表现出可比的时间尺度。我们的结果表明,这种测量表明了每个皮层区域的固有特征,而不是单个神经元的动态特征,并且不依赖于任务需求。即使任务上下文严重影响了 S1 下游皮质区域的神经编码,它们的时间尺度仍然不受影响。此外,我们发现这些时间常数在具有不同延迟或编码的神经元之间是不变的。尽管神经元具有完全不同的动力学,但它们在每个皮层区域内都表现出可比的时间尺度。我们的结果表明,这种测量表明了每个皮层区域的固有特征,而不是单个神经元的动态特征,并且不依赖于任务需求。即使任务上下文严重影响了 S1 下游皮质区域的神经编码,它们的时间尺度仍然不受影响。此外,我们发现这些时间常数在具有不同延迟或编码的神经元之间是不变的。尽管神经元具有完全不同的动力学,但它们在每个皮层区域内都表现出可比的时间尺度。我们的结果表明,这种测量表明了每个皮层区域的固有特征,不是单个神经元的动态特征,并且不依赖于任务需求。

更新日期:2021-01-12
down
wechat
bug