当前位置: X-MOL 学术Nucl. Eng. Des. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Progress in two-phase flow modeling: Interfacial area transport
Nuclear Engineering and Design ( IF 1.7 ) Pub Date : 2021-01-12 , DOI: 10.1016/j.nucengdes.2020.111019
Seungjin Kim , Mamoru Ishii , Ran Kong , Guanyi Wang

The interfacial area transport equation (IATE) employs a dynamic approach to predict interfacial area concentration (IAC) in two-phase flows. It eliminates the need for the static flow regime transition criteria and flow regime dependent IAC correlations used in closing the two-fluid model and therefore any potential artificial bifurcation or numerical oscillations stemming from these static correlations. The efforts to develop the IATE are reviewed in this work, focusing on studies within the past decade. The current state-of-the-art in IATE is a two-group interfacial area transport equation that is applicable to predict interfacial area concentration from bubbly to churn-turbulent flows. An extensive experimental database has been established in literature for various two-phase flow conditions. The database is used to develop constitutive models to close the IATE and to validate its performance. These include adiabatic and heated conditions, vertical and horizontal flow orientations, channels with flow restrictions, round, rectangular, annulus, and rod-bundle geometries, and normal-gravity and reduced-gravity conditions. IATE has been implemented into practical system analysis codes such as TRACE and computational fluid dynamics (CFD) codes such as CFX and Fluent to evaluate its performance. In addition, the recent efforts of extending the IATE beyond churn-turbulent flow to churn-annular transition and annular flows are also reviewed. These include the new instrumentation, experimental database, and additional constitutive models to predict annular flows.



中文翻译:

两相流建模的进展:界面区域传输

界面面积输运方程(IATE)采用动态方法来预测两相流中的界面面积浓度(IAC)。它消除了用于关闭双流体模型的静态流态转换标准和依赖于流态的IAC相关性的需要,因此消除了由这些静态相关性引起的任何潜在的人为分叉或数值振荡。在这项工作中回顾了开发IATE的努力,重点是过去十年中的研究。IATE当前的最新技术是两类界面面积传输方程,适用于预测从气泡流到搅动湍流的界面面积浓度。在文献中已经建立了广泛的实验数据库,用于各种两相流动条件。该数据库用于开发本构模型以关闭IATE并验证其性能。这些条件包括绝热和加热条件,垂直和水平流动方向,具有流动限制的通道,圆形,矩形,环形和杆状束几何形状,以及重力和重力降低的条件。IATE已被实现为实用的系统分析代码(例如TRACE)和计算流体动力学(CFD)代码(例如CFX和Fluent),以评估其性能。此外,还回顾了最近将IATE扩展到从湍流到湍流-环形过渡和环形流的努力。其中包括新的仪器,实验数据库和其他用于预测环形流动的本构模型。这些条件包括绝热和加热条件,垂直和水平流动方向,具有流动限制的通道,圆形,矩形,环形和杆状束几何形状,以及重力和重力降低的条件。IATE已被实现为实用的系统分析代码(例如TRACE)和计算流体动力学(CFD)代码(例如CFX和Fluent),以评估其性能。此外,还回顾了最近将IATE扩展到从湍流到湍流-环形过渡和环形流的努力。其中包括新的仪器,实验数据库和其他用于预测环形流动的本构模型。这些条件包括绝热和加热条件,垂直和水平流动方向,具有流动限制的通道,圆形,矩形,环形和杆状束几何形状,以及重力和重力降低的条件。IATE已被实现为实用的系统分析代码(例如TRACE)和计算流体动力学(CFD)代码(例如CFX和Fluent),以评估其性能。此外,还回顾了最近将IATE扩展到从湍流到湍流-环形过渡和环形流的努力。其中包括新的仪器,实验数据库和其他用于预测环形流动的本构模型。以及正常重力和减小重力的条件。IATE已被实现为实用的系统分析代码(例如TRACE)和计算流体动力学(CFD)代码(例如CFX和Fluent),以评估其性能。此外,还回顾了最近将IATE扩展到从湍流到湍流-环形过渡和环形流的努力。其中包括新的仪器,实验数据库和其他用于预测环形流动的本构模型。以及正常重力和减小重力的条件。IATE已被实现为实用的系统分析代码(例如TRACE)和计算流体动力学(CFD)代码(例如CFX和Fluent),以评估其性能。此外,还回顾了最近将IATE扩展到从湍流到湍流-环形过渡和环形流的努力。其中包括新的仪器,实验数据库和其他用于预测环形流动的本构模型。

更新日期:2021-01-12
down
wechat
bug