当前位置: X-MOL 学术Adv. Space Res. › 论文详情
Space object material identification method of hyperspectral imaging based on Tucker decomposition
Advances in Space Research ( IF 2.177 ) Pub Date : 2021-01-12 , DOI: 10.1016/j.asr.2021.01.004
Boyang Nie; Lei Yang; Fei Zhao; Jinsong Zhou; Juanjuan Jing

Space object material identification method based on Tucker decomposition is proposed and demonstrated experimentally. Space target generally has a low spatial resolution because of the limitation in detection distance. Hyperspectral imaging (HSI) technology can capture the image from visible light to shortwave infrared continuously while providing the spatial and spectral information of the target, thereby introducing a new space target detection and identification approach. However, the data obtained by the HSI system often contain mixed pixels, thereby causing difficulties in target material identification. In this work, a material identification method of hyperspectral data based on Tucker decomposition is proposed by combining mixed spectral theory with tensor decomposition. The feasibility of the method is verified by using satellite model hyperspectral data with different spatial resolutions compared with the endmember obtained from the non-negative matrix decomposition (NMF), independent component analysis (ICA), tensor singular value decomposition (t-SVD). The average CORR of NMF, ICA, t-SVD and the proposed method is 0.2694, 0.5818, 0.6397 and 0.937, correspondingly. Therefore, the proposed method has demonstrated a more remarkable performance in terms of material identification, the analysis results of the material abundance distribution that used the proposed method.



中文翻译:

基于塔克分解的高光谱成像空间物体材料识别方法

提出了基于塔克分解的空间物体材料识别方法,并进行了实验验证。由于检测距离的限制,空间目标通常具有较低的空间分辨率。高光谱成像(HSI)技术可以连续捕获从可见光到短波红外的图像,同时提供目标的空间和光谱信息,从而引入了一种新的空间目标检测和识别方法。然而,由HSI系统获得的数据通常包含混合像素,从而导致目标材料识别上的困难。结合混合光谱理论和张量分解,提出了一种基于塔克分解的高光谱数据材料识别方法。与使用非负矩阵分解(NMF),独立分量分析(ICA),张量奇异值分解(t-SVD)获得的最终成员相比,使用具有不同空间分辨率的卫星模型高光谱数据验证了该方法的可行性。NMF,ICA,t-SVD和所提出的方法的平均CORR分别为0.2694、0.5818、0.6397和0.937。因此,该方法在材料识别,使用该方法的材料丰度分布的分析结果方面表现出了更加出色的性能。ICA,t-SVD和建议的方法分别为0.2694、0.5818、0.6397和0.937。因此,该方法在材料识别,使用该方法的材料丰度分布的分析结果方面表现出了更加出色的性能。ICA,t-SVD和建议的方法分别为0.2694、0.5818、0.6397和0.937。因此,该方法在材料识别,使用该方法的材料丰度分布的分析结果方面表现出了更加出色的性能。

更新日期:2021-02-22
全部期刊列表>>
2021新春特辑
SN Applied Sciences期刊征稿中
JCR Q1医学全学科
虚拟特刊
亚洲大洋洲地球科学
NPJ欢迎投稿
自然科研论文编辑
ERIS期刊投稿
欢迎阅读创刊号
自然职场,为您触达千万科研人才
spring&清华大学出版社
城市可持续发展前沿研究专辑
Springer 纳米技术权威期刊征稿
全球视野覆盖
施普林格·自然新
chemistry
物理学研究前沿热点精选期刊推荐
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
阿拉丁试剂right
上海中医药大学
南科大-连续三周2.26
西湖大学
化学所
北京大学
山东大学
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
南方科技大学
张凤娇
中国石油大学
天合科研
x-mol收录
试剂库存
down
wechat
bug