当前位置: X-MOL 学术Meccanica › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bubble dynamics in microchannel: An overview of the state-of-the-art
Meccanica ( IF 1.9 ) Pub Date : 2021-01-12 , DOI: 10.1007/s11012-020-01300-4
Sambhaji T. Kadam , Ibrahim Hassan , Ritunesh Kumar , Mohammad Azizur Rahman

The inception of the boiling, in a pool or flow boiling, is the formation of the vapor bubble at an active nucleation site that plays a crucial role in the boiling process and it becomes critical and unfolds many facets when channel size reduces to submicron. The detailed knowledge of the bubble dynamics is helpful in establishing the thermal and hydraulic flow behavior in the microchannel. In the current paper, bubble dynamics that include bubble nucleation at the nucleation site, its growth, departure, and motion along the flow in a microchannel(s) are discussed in detail. Different models developed for critical cavity radius favorable for bubble nucleation are compiled and observe that models exhibit large deviation. The bubble growth models are compiled and concluded that the development of a more generalize bubble growth model is necessary that would be capable of accounting for inertia controlled and thermal diffusion controlled regions. Bubbles at nucleation sites in a microchannel grow under the influence of various forces such as surface tension, inertia, shear, gravitational and evaporation momentum. Parametric analysis of these forces reckoned that the threshold between macro- to microchannel could be identify through critical analysis of such forces. Eventually, the possible impact of the various factors such as operating conditions, geometrical parameters, thermophysical properties of fluid on bubble dynamics in microchannel has been reported.



中文翻译:

微通道中的气泡动力学:最新技术概述

在池沸腾或流式沸腾中,沸腾的开始是在活跃的成核位置处形成气泡,该气泡在沸腾过程中起着至关重要的作用,当通道尺寸减小至亚微米时,它就变得至关重要并展开了许多方面。气泡动力学的详细知识有助于建立微通道中的热力和水力流动行为。在当前的论文中,详细讨论了气泡动力学,包括在成核位置的气泡成核,气泡的生长,离开和沿微通道中的流动运动。编译了不同的模型,这些模型开发了有利于气泡成核的临界腔半径,并观察到模型显示出较大偏差。编译了气泡增长模型,并得出结论,有必要开发一个更通用的气泡增长模型,该模型能够考虑惯性控制区域和热扩散控制区域。微通道中成核位置处的气泡在各种力(例如表面张力,惯性,剪切,重力和蒸发动量)的影响下生长。对这些力的参数分析认为,可以通过对这些力进行严格分析来确定宏通道与微通道之间的阈值。最终,已经报道了各种因素例如操作条件,几何参数,流体的热物理性质对微通道中的气泡动力学的可能影响。微通道中成核位置处的气泡在各种力(例如表面张力,惯性,剪切,重力和蒸发动量)的影响下生长。对这些力的参数分析认为,可以通过对这些力进行严格分析来确定宏通道与微通道之间的阈值。最终,已经报道了各种因素例如操作条件,几何参数,流体的热物理性质对微通道中的气泡动力学的可能影响。微通道中成核位置处的气泡在各种力(例如表面张力,惯性,剪切,重力和蒸发动量)的影响下生长。对这些力的参数分析认为,可以通过对这些力进行严格分析来确定宏通道与微通道之间的阈值。最终,已经报道了各种因素例如操作条件,几何参数,流体的热物理性质对微通道中的气泡动力学的可能影响。

更新日期:2021-01-12
down
wechat
bug