当前位置: X-MOL 学术J. Biomed. Opt. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Characterization of nanosensitive multifractality in submicron scale tissue morphology and its alteration in tumor progression
Journal of Biomedical Optics ( IF 3.0 ) Pub Date : 2021-01-01 , DOI: 10.1117/1.jbo.26.1.016003
Nandan Das 1, 2 , Sergey Alexandrov 1 , Katie E Gilligan 3 , Róisín M Dwyer 3 , Rolf B Saager 2 , Nirmalya Ghosh 4 , Martin Leahy 1, 5
Affiliation  

Significance: Assessment of disease using optical coherence tomography is an actively investigated problem, owing to many unresolved challenges in early disease detection, diagnosis, and treatment response monitoring. The early manifestation of disease or precancer is typically associated with subtle alterations in the tissue dielectric and ultrastructural morphology. In addition, biological tissue is known to have ultrastructural multifractality. Aim: Detection and characterization of nanosensitive structural morphology and multifractality in the tissue submicron structure. Quantification of nanosensitive multifractality and its alteration in progression of tumor. Approach: We have developed a label free nanosensitive multifractal detrended fluctuation analysis(nsMFDFA) technique in combination with multifractal analysis and nanosensitive optical coherence tomography (nsOCT). The proposed method deployed for extraction and quantification of nanosensitive multifractal parameters in mammary fat pad (MFP). Results: Initially, the nsOCT approach is numerically validated on synthetic submicron axial structures. The nsOCT technique was applied to pathologically characterized MFP of murine breast tissue to extract depth-resolved nanosensitive submicron structures. Subsequently, two-dimensional MFDFA were deployed on submicron structural en face images to extract nanosensitive tissue multifractality. We found that nanosensitive multifractality increases in transition from healthy to tumor. Conclusions: This method for extraction of nanosensitive tissue multifractality promises to provide a noninvasive diagnostic tool for early disease detection and monitoring treatment response. The novel ability to delineate the dominant submicron scale nanosensitive multifractal properties may also prove useful for characterizing a wide variety of complex scattering media of non-biological origin.

中文翻译:

亚微米尺度组织形态学中纳米敏感多重分形的表征及其在肿瘤进展中的改变

意义:由于在早期疾病检测、诊断和治疗反应监测中存在许多未解决的挑战,使用光学相干断层扫描评估疾病是一个积极研究的问题。疾病或癌前病变的早期表现通常与组织介电和超微结构形态的细微改变有关。此外,已知生物组织具有超微结构多重分形。目的:检测和表征组织亚微米结构中的纳米敏感结构形态和多重分形。纳米敏感多重分形的量化及其在肿瘤进展中的改变。方法:我们开发了一种无标记的纳米敏感多重分形去趋势波动分析 (nsMFDFA) 技术,结合多重分形分析和纳米敏感光学相干断层扫描 (nsOCT)。所提出的方法用于提取和量化乳腺脂肪垫 (MFP) 中的纳米敏感多重分形参数。结果:最初,nsOCT 方法在合成亚微米轴向结构上进行了数值验证。nsOCT 技术应用于小鼠乳腺组织的病理特征 MFP,以提取深度分辨的纳米敏感亚微米结构。随后,二维 MFDFA 被部署在亚微米结构正面图像上,以提取纳米敏感组织多重分形。我们发现纳米敏感性多重分形在从健康到肿​​瘤的过渡中增加。结论:这种提取纳米敏感组织多重分形的方法有望为早期疾病检测和监测治疗反应提供一种无创诊断工具。描绘主要亚微米级纳米敏感多重分形特性的新能力也可能被证明可用于表征各种非生物来源的复杂散射介质。
更新日期:2021-01-11
down
wechat
bug