当前位置: X-MOL 学术Mater. Today Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Charge-transfer complexes and their applications in optoelectronic devices
Materials Today Energy ( IF 9.0 ) Pub Date : 2021-01-11 , DOI: 10.1016/j.mtener.2021.100644
Dong Shen , Wen-Cheng Chen , Ming-Fai Lo , Chun-Sing Lee

After several decades of intense researches on organic optoelectronics, several types of optoelectronic devices such as organic light-emitting devices (OLEDs) have become commercially viable, and performance of organic photovoltaic (OPV) devices has seen significant progress. At the same time, scientists are getting better understanding on the device physics, and the important roles of charge-transfer (CT) states in these devices are widely recognized. CT states are formed upon CT interaction between donor (D) and acceptor (A) molecules. When the extent of CT is high enough, materials with the CT states are specifically referred as charge-transfer complexes (CTCs). Depending on their formation mechanisms, CTCs can be classified into ground-state CTCs (GSCs) and excited-state CTCs (exciplexes). Novel optoelectronic properties of GSCs, including their abnormally high electrical conductivities, long-wavelength photon absorption, charge-generation, etc., have been applied in various optoelectronic devices. On the other hand, attention of excited CTCs is primarily focused on exciplex emission and CT absorption. Recent experimental evidence deepens the understanding of CT states and their new applications are exploited. As there are limited systematic reviews on the application of CTCs in different organic devices, this review intends to fill this gap by giving a brief overview of novel CTC applications and correlating CT properties with device performance.



中文翻译:

电荷转移配合物及其在光电器件中的应用

经过数十年的有机光电子学的深入研究,诸如有机发光器件(OLED)的几种类型的光电子器件已在商业上成为可行的,并且有机光伏(OPV)器件的性能已取得显着进步。同时,科学家对设备物理学有了更好的了解,电荷转移(CT)状态在这些设备中的重要作用已得到广泛认可。CT状态是在供体(D)和受体(A)分子之间进行CT相互作用后形成的。当CT的程度足够高时,具有CT状态的材料专门称为电荷转移络合物(CTC)。根据其形成机制,CTC可以分为基态CTC(GSC)和激发态CTC(激基复合物)。GSC的新颖光电特性,包括其异常高的电导率,长波长光子吸收,电荷产生等,已被用于各种光电器件中。另一方面,兴奋的四氯化碳的注意力主要集中在激基复合物发射和CT吸收上。最近的实验证据加深了对CT状态的理解,并开发了它们的新应用。由于对CTC在不同有机设备中的应用的系统评价有限,本综述旨在通过简要概述新型CTC应用并将CT特性与设备性能相关联来填补这一空白。兴奋的四氯化碳的注意力主要集中在激基复合物发射和CT吸收上。最近的实验证据加深了对CT状态的理解,并开发了它们的新应用。由于对CTC在不同有机设备中的应用的系统评价有限,本综述旨在通过简要概述新型CTC应用并将CT特性与设备性能相关来填补这一空白。兴奋的四氯化碳的注意力主要集中在激基复合物发射和CT吸收上。最近的实验证据加深了对CT状态的理解,并开发了它们的新应用。由于对CTC在不同有机设备中的应用的系统评价有限,本综述旨在通过简要概述新型CTC应用并将CT特性与设备性能相关来填补这一空白。

更新日期:2021-02-19
down
wechat
bug