当前位置: X-MOL 学术bioRxiv. Genet. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
RNA-directed DNA methylation prevents rapid and heritable reversal of transposon silencing under heat stress in Zea mays.
bioRxiv - Genetics Pub Date : 2021-01-08 , DOI: 10.1101/2021.01.08.425849
Wei Guo , Dafang Wang , Damon Lisch

In large complex plant genomes, RNA-directed DNA methylation (RdDM) ensures that epigenetic silencing is maintained at the boundary between genes and flanking transposable elements. In maize, RdDM is dependent on Modifer of Paramutation 1 (Mop1 ), a putative RNA dependent RNA polymerase. Here we show that although RdDM is essential for the maintenance of DNA methylation of a silenced MuDR transposon in maize, a loss of that methylation does not result in a restoration of activity. Instead, heritable maintenance of silencing is maintained by histone modifications. At one terminal inverted repeat (TIR) of this element, heritable silencing is mediated via H3K9 and H3K27 dimethylation, even in the absence of DNA methylation. At the second TIR, heritable silencing is mediated by H3K29 trimethylation, a mark normally associated with somatically inherited gene silencing. We find that a brief exposure of high temperature in a mop1 mutant rapidly reverses both of these modifications in conjunction with a loss of transcriptional silencing. These reversals are heritable, even in mop1 wild type progeny in which methylation is restored at both TIRs. These observations suggest that DNA methylation is neither necessary to maintain silencing, nor is it sufficient to initiate silencing once has been reversed. However, given that heritable reactivation only occurs in a mop1 mutant background, these observations suggest that DNA methylation is required to buffer the effects of environmental stress on transposable elements.

中文翻译:

RNA定向的DNA甲基化可防止玉米在热胁迫下快速而可遗传地逆转转座子沉默。

在大型复杂植物基因组中,RNA定向DNA甲基化(RdDM)可确保在基因与侧翼可转座元件之间的边界处保持表观遗传沉默。在玉米中,RdDM依赖于一种推定的RNA依赖RNA聚合酶,即Paramutation 1(Mop1)。在这里我们显示,尽管RdDM对于维持沉默的MuDR转座子在玉米中的DNA甲基化至关重要,但是该甲基化的丧失不会导致活性的恢复。而是通过组蛋白修饰维持沉默的遗传维持。在该元件的一个末端反向重复序列(TIR)处,即使没有DNA甲基化,可遗传的沉默也可通过H3K9和H3K27二甲基化介导。在第二个TIR,可遗传沉默通过H3K29三甲基化介导,通常与体细胞遗传沉默相关的标记。我们发现,在mop1突变体中短暂暴露于高温会迅速逆转这两个修饰,同时失去转录沉默。即使在两个TIR都恢复甲基化的mop1野生型后代中,这些逆转也是可遗传的。这些观察结果表明,DNA甲基化既不是维持沉默所必需的,也不足以在逆转后启动沉默。但是,鉴于可遗传的激活仅发生在mop1突变体背景下,这些观察结果表明需要DNA甲基化来缓冲环境胁迫对转座因子的影响。我们发现,在mop1突变体中短暂暴露于高温会迅速逆转这两个修饰,同时失去转录沉默。即使在两个TIR都恢复甲基化的mop1野生型后代中,这些逆转也是可遗传的。这些观察结果表明,DNA甲基化既不是维持沉默所必需的,也不足以在逆转后启动沉默。但是,鉴于可遗传的激活仅发生在mop1突变体背景下,这些观察结果表明需要DNA甲基化来缓冲环境胁迫对转座因子的影响。我们发现,在mop1突变体中短暂暴露于高温会迅速逆转这两个修饰,同时失去转录沉默。即使在两个TIR都恢复甲基化的mop1野生型后代中,这些逆转也是可遗传的。这些观察结果表明,DNA甲基化既不是维持沉默所必需的,也不足以在逆转后启动沉默。但是,鉴于可遗传的激活仅发生在mop1突变体背景下,这些观察结果表明需要DNA甲基化来缓冲环境胁迫对转座因子的影响。这些观察结果表明,DNA甲基化既不是维持沉默所必需的,也不足以在逆转后启动沉默。但是,鉴于可遗传的激活仅发生在mop1突变体背景下,这些观察结果表明需要DNA甲基化来缓冲环境胁迫对转座因子的影响。这些观察结果表明,DNA甲基化既不是维持沉默所必需的,也不足以在逆转后启动沉默。但是,鉴于可遗传的激活仅发生在mop1突变体背景下,这些观察结果表明需要DNA甲基化来缓冲环境胁迫对转座因子的影响。
更新日期:2021-01-10
down
wechat
bug