当前位置: X-MOL 学术Eng. Sci. Technol. Int. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Computational fluid dynamic simulations of solidification for enhancing speed of continuous cast copper
Engineering Science and Technology, an International Journal ( IF 5.1 ) Pub Date : 2021-01-10 , DOI: 10.1016/j.jestch.2020.12.009
Thomas D.A. Jones , Richard I. Strachan , David M. Mackie , Mervyn Cooper , Brain Frame , Jan B. Vorstius

In this research experiment computational fluid dynamic (CFD) models were constructed, within Ansys Fluent TM v.R1, to investigate phenomena occurring during the Vertically Upwards Continuous Casting (VUCC) of 8 mm diameter, oxygen free copper (OFCu) for alterations to the casting speed. The simulated influence of heat transported over a 0.1 mm air gap formed within the casting die was investigated and a value for the die wall heat transfer coefficient (hc) of (9.0 ± 0.2) × 104 W/m2K, was extracted. Using this value for hc, simulations of the entire casting crucible and die were made for casting speed settings: pushback motion at 0.06 m/s, average; dwell motion (pause) at 0.05 m/s, average; and continuous motions at 0.022 m/s, 0.015 m/s and 0.008 m/s; and were validated against literature values for measured thermal distribution within the casting die. The fastest casting speed for 8 mm OFCu was investigated and a trend between simulated solidification front and measured grain growth direction was identified, highlighting, the casting motions pushback and dwell yield improved casting conditions. Fluid flow rate was investigated within the casting crucible and showed a small influence on casting due to natural convection relative to flow within the die, 0.001 ± 0.0005 m/s compared with 0.1 ± 0.01 m/s for pushback casting, respectively.



中文翻译:

增强连续铸铜速度的凝固过程的流体动力学模拟

在这项研究实验中,在Ansys Fluent TM v.R1中构建了计算流体动力学(CFD)模型,以研究直径为8 mm的垂直向上连续铸造(VUCC),无氧铜(OFCu)发生的现象,以改变铸件的变形。铸造速度。研究了在铸模内形成的0.1 mm气隙上传热的模拟影响,并且模壁传热系数(hc)的值为(9.0±0.2)×10 4 W / m 2K,被提取。使用该hc值,可以模拟整个铸造坩埚和模具的铸造速度设置:平均推回运动为0.06 m / s;平均停留运动(暂停)为0.05 m / s;连续运动为0.022 m / s,0.015 m / s和0.008 m / s;并根据文献数据对铸模内测得的热分布进行了验证。研究了8 mm OFCu的最快铸造速度,并确定了模拟凝固前沿和实测晶粒生长方向之间的趋势,突出显示了铸造运动的后推和保压率改善了铸造条件。对浇铸坩埚内的流体流速进行了研究,结果显示,由于自然对流(相对于模具内部的流动),对浇铸的影响较小,为0.001±0.0005 m / s,而后推浇铸为0.1±0.01 m / s,

更新日期:2021-01-10
down
wechat
bug