当前位置: X-MOL 学术J. Web Semant. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Knowledge graph embeddings for dealing with concept drift in machine learning
Journal of Web Semantics ( IF 2.1 ) Pub Date : 2021-01-09 , DOI: 10.1016/j.websem.2020.100625
Jiaoyan Chen , Freddy Lécué , Jeff Z. Pan , Shumin Deng , Huajun Chen

Data stream learning has been largely studied for extracting knowledge structures from continuous and rapid data records. As data is evolving on a temporal basis, its underlying knowledge is subject to many challenges. Concept drift,1 as one of core challenge from the stream learning community, is described as changes of statistical properties of the data over time, causing most of machine learning models to be less accurate as changes over time are in unforeseen ways. This is particularly problematic as the evolution of data could derive to dramatic change in knowledge. We address this problem by studying the semantic representation of data streams in the Semantic Web, i.e., ontology streams. Such streams are ordered sequences of data annotated with ontological vocabulary. In particular we exploit three levels of knowledge encoded in ontology streams to deal with concept drifts: i) existence of novel knowledge gained from stream dynamics, ii) significance of knowledge change and evolution, and iii) (in)consistency of knowledge evolution. Such knowledge is encoded as knowledge graph embeddings through a combination of novel representations: entailment vectors, entailment weights, and a consistency vector. We illustrate our approach on classification tasks of supervised learning. Key contributions of the study include: (i) an effective knowledge graph embedding approach for stream ontologies, and (ii) a generic consistent prediction framework with integrated knowledge graph embeddings for dealing with concept drifts. The experiments have shown that our approach provides accurate predictions towards air quality in Beijing and bus delay in Dublin with real world ontology streams.

更新日期:2021-01-22
down
wechat
bug