当前位置: X-MOL 学术J. Volcanol. Geotherm. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The magmatic and eruptive evolution of the 1883 caldera-forming eruption of Krakatau: Integrating field- to crystal-scale observations
Journal of Volcanology and Geothermal Research ( IF 2.4 ) Pub Date : 2021-01-09 , DOI: 10.1016/j.jvolgeores.2021.107176
A.L. Madden-Nadeau , M. Cassidy , D.M. Pyle , T.A. Mather , S.F.L. Watt , S.L. Engwell , M. Abdurrachman , M.E.M. Nurshal , D.R. Tappin , T. Ismail

Explosive, caldera-forming eruptions are exceptional and hazardous volcanic phenomena. The 1883 eruption of Krakatau is the largest such event for which there are detailed contemporary written accounts, allowing information on the eruptive progression to be integrated with the stratigraphy and geochemistry of its products. Freshly exposed sequences of the 1883 eruptive deposits of Krakatau, stripped of vegetation by a tsunami generated by the flank collapse of Anak Krakatau in 2018, shed new light on the eruptive sequence. Matrix glass from the base of the stratigraphy is chemically distinct and more evolved than the overlying sequence indicating the presence of a shallow, silicic, melt-rich region that was evacuated during the early eruptive activity from May 1883 onwards. Disruption of the shallow, silicic magma may have led to the coalescence and mixing of chemically similar melts representative of a range of magmatic conditions, as evidenced by complex and varied plagioclase phenocryst zoning profiles. This mixing, over a period of two to three months, culminated in the onset of the climactic phase of the eruption on 26th August 1883. Pyroclastic density currents (PDCs) emplaced during this phase of the eruption show a change in transport direction from north east to south west, coinciding with the deposition of a lithic lag breccia unit. This may be attributed to partial collapse of an elevated portion of the island, resulting in the removal of a topographic barrier. Edifice destruction potentially further reduced the overburden on the underlying magmatic system, leading to the most explosive and energetic phase of the eruption in the morning of 27th August 1883. This phase of the eruption culminated in a final period of caldera collapse, which is recorded in the stratigraphy as a second lithic lag breccia. The massive PDC deposits emplaced during this final phase contain glassy blocks up to 8 m in size, observed for the first time in 2019, which are chemically similar to the pyroclastic sequence. These blocks are interpreted as representing stagnant, shallow portions of the magma reservoir disrupted during the final stages of caldera formation. This study provides new evidence for the role that precursory eruptions and amalgamation of shallow crustal magma bodies potentially play in the months leading up to caldera-forming eruptions.



中文翻译:

喀拉喀托1883年火山口形成喷发的岩浆和喷发演化:实地观测到晶体尺度的观测

爆炸性火山口喷发是异常且危险的火山现象。1883年的喀拉喀托火山喷发是最大的此类事件,有详细的当代书面记载,可让有关火山爆发过程的信息与其产品的地层和地球化学相结合。刚暴露的1883年喀拉喀托火山喷发层序被2018年Anak Krakatau侧翼坍塌产生的海啸所覆盖,为该火山喷发层序提供了新的线索。来自地层基础的基质玻璃在化学上是独特的,并且比上覆序列演化得更多,这表明存在一个浅的,硅质的,富含熔体的区域,该区域在从1883年5月开始的早期喷发活动中被抽空了。浅层的破坏,硅质岩浆可能导致了代表一系列岩浆条件的化学相似的熔体的聚结和混合,这由复杂的和不同的斜长石斑晶带分布图证明。在两到三个月的时间里,这种混合达到高潮,直到1883年8月26日爆发喷发的高潮阶段。在喷发的此阶段所施加的火山碎屑密度流(PDC)显示,东北方向的运输方向发生了变化。西南,与一个石质滞后角砾岩单元的沉积相吻合。这可能归因于岛上升高部分的部分塌陷,从而消除了地形障碍。建筑物的破坏有可能进一步减少潜在岩浆系统的负担,在1883年8月27日上午导致喷发最具爆炸性和活力的阶段。喷发的这一阶段达到了破火山口倒塌的最后阶段,该阶段在地层中被记录为第二次岩性角砾角砾岩。在最后阶段放置的大量PDC沉积物包含玻璃状块体,该块体大小最大为8 m,这在2019年首次观察到,其化学性质类似于火山碎屑序列。这些块体被解释为代表在破火山口形成的最后阶段被破坏的岩浆储层的停滞,浅层部分。这项研究提供了新的证据,说明浅层地壳岩浆体的前兆爆发和合并可能在导致火山口形成爆发的月份中发挥作用。喷发的这一阶段最终达到破火山口倒塌的最后阶段,该阶段在地层中记录为第二个石质滞后角砾岩。在最后阶段放置的大量PDC矿床包含玻璃状块体,该块体大小最大为8 m,这在2019年首次观察到,其化学性质类似于火山碎屑序列。这些块体被解释为代表在破火山口形成的最后阶段被破坏的岩浆储层的停滞,浅层部分。这项研究提供了新的证据,说明浅层地壳岩浆体的前兆爆发和合并可能在导致火山口形成爆发的月份中发挥作用。喷发的这一阶段最终达到破火山口倒塌的最后阶段,该阶段在地层中记录为第二个石质滞后角砾岩。在最后阶段放置的大量PDC沉积物包含玻璃状块体,该块体大小最大为8 m,这在2019年首次观察到,其化学性质类似于火山碎屑序列。这些块体被解释为代表在破火山口形成的最后阶段被破坏的岩浆储层的停滞,浅层部分。这项研究提供了新的证据,说明浅层地壳岩浆体的前兆爆发和合并可能在导致火山口形成爆发的月份中发挥作用。在最后阶段放置的大量PDC沉积物包含玻璃状块体,该块体大小最大为8 m,这在2019年首次观察到,其化学性质类似于火山碎屑序列。这些块体被解释为代表在破火山口形成的最后阶段被破坏的岩浆储层的停滞,浅层部分。这项研究提供了新的证据,说明浅层地壳岩浆体的前兆爆发和合并可能在导致火山口形成爆发的月份中发挥作用。在最后阶段放置的大量PDC矿床包含玻璃状块体,最大规模为8 m,这在2019年首次观察到,其化学性质类似于火山碎屑序列。这些块体被解释为代表在破火山口形成的最后阶段被破坏的岩浆储层的停滞,浅层部分。这项研究提供了新的证据,说明浅层岩浆体的前兆爆发和合并可能在导致火山口形成爆发的月份中发挥作用。

更新日期:2021-01-22
down
wechat
bug