当前位置: X-MOL 学术Compos. Part A Appl. Sci. Manuf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electrospun porous carbon nanofibers @ SnOx nanocomposites for high-performance supercapacitors: Microstructures and electrochemical properties
Composites Part A: Applied Science and Manufacturing ( IF 8.1 ) Pub Date : 2021-01-10 , DOI: 10.1016/j.compositesa.2021.106278
Meilian Cao , Dong Wang , Jiqing Lu , Wanli Cheng , Guangping Han , Jianbo Zhou

Porous carbon nanofibers (PCNFs)@Tin oxide (SnOx) nanocomposites are synthesized by co-electrospinning using renewable alkali lignin-polyaniline (PAN) solution as the core and Sn precursors-polyvinyl pyrrolidone (PVP) solution as the shell, followed by heat treatment. By changing the preheating temperature during heat treatment, PCNFs@SnOx nanocomposites with different nanostructures are obtained. The nanocomposites as electrodes of supercapacitors exhibit remarkable performance. The relationship between the microstructures and electrochemical properties of nanocomposites is explored. The experimental results show that increasing the preheating temperature to 300 °C, micropores and mesopores coexist in this nanocomposite. The prepared nanocomposite as the electrode possesses a high specific capacitance of 229 F g−1 at 0.2 A g−1. The superior electrochemical performance is presumably attributed to the large specific surface areas of PCNFs and pseudocapacitance of SnOx modifications. These encouraging results show great potential in synthesizing renewable biomass-based PCNFs@ SnOx nanocomposites with different structures.



中文翻译:

用于高性能超级电容器的电纺多孔碳纳米纤维@ SnO x纳米复合材料:微观结构和电化学性能

多孔碳纳米纤维(PCNFs)@氧化锡(SnO x)纳米复合材料是通过以可再生碱木质素-聚苯胺(PAN)溶液为核,并以锡前驱体-聚乙烯吡咯烷酮(PVP)溶液为壳,然后加热来共电纺丝合成的治疗。通过改变热处理过程中的预热温度,PCNFs @ SnO x获得具有不同纳米结构的纳米复合材料。作为超级电容器电极的纳米复合材料表现出卓越的性能。探索了纳米复合材料的微观结构与电化学性能之间的关系。实验结果表明,将这种纳米复合材料的预热温度提高到300°C,微孔和中孔共存。所制备的作为电极的纳米复合材料在0.2 A g -1下具有229 F g -1的高比电容。优越的电化学性能可能归因于PCNF的大比表面积和SnO x修饰的假电容。这些令人鼓舞的结果表明,在合成可再生的基于生物质的PCNFs @ SnO x方面具有巨大潜力 具有不同结构的纳米复合材料。

更新日期:2021-01-16
down
wechat
bug