当前位置: X-MOL 学术Comput. Mech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A stress-driven computational homogenization method based on complementary potential energy variational principle for elastic composites
Computational Mechanics ( IF 3.7 ) Pub Date : 2021-01-09 , DOI: 10.1007/s00466-020-01953-8
Yuxi Xie , Shaofan Li

Based on the complementary potential energy variational principle, in this work, we proposed a stress-driven homogenization procedure to compute overall effective material properties for elastic composites with locally heterogenous micro-structures. We have developed a novel incremental variational formulation for homogenization problems of both infinitesimal and finite deformations where the macro-stress-based complementary potential energy is obtained for hyperelastic materials for a global minimization problem with respect to fine-scale displacement fluctuation field. The point of departure of our approach is a general complementary variational principle formulation that can determine material responses of elastic composites with heterogeneous micro structures. We have implemented the proposed stress-driven computational homogenization procedure with the finite element method. By comparing the numerical results with the analytical method and the strain-driven homogenization method, we find that the stress-driven homogenization offers the lower bound estimate of materials properties for elastic composites.



中文翻译:

基于互补势能变分原理的弹性复合材料应力驱动计算均质化方法

基于互补势能变分原理,在这项工作中,我们提出了一种应力驱动的均质化程序,以计算具有局部异质微结构的弹性复合材料的整体有效材料性能。我们针对无限小变形和有限变形的均质化问题开发了一种新颖的增量变分公式,其中针对超尺寸位移波动场的整体最小化问题,针对超弹性材料获得了基于宏观应力的互补势能。我们方法的出发点是一般的互补变分原理公式,可以确定具有异质微观结构的弹性复合材料的材料响应。我们已经用有限元方法实现了所提出的应力驱动计算均匀化程序。通过将数值结果与分析方法和应变驱动均质方法进行比较,我们发现应力驱动均质提供了弹性复合材料材料性能的下界估计。

更新日期:2021-01-10
down
wechat
bug