当前位置: X-MOL 学术Acta. Mech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Annealing-induced phase transformations and hardness evolution in Al–Cu–Al composites obtained by high-pressure torsion
Acta Mechanica ( IF 2.7 ) Pub Date : 2021-01-10 , DOI: 10.1007/s00707-020-02858-6
R. R. Mulyukov , G. F. Korznikova , K. S. Nazarov , R. Kh. Khisamov , S. N. Sergeev , R. U. Shayachmetov , G. R. Khalikova , E. A. Korznikova

Multilayered bulk Al–Cu–Al metal-matrix composite was fabricated by means of high-pressure torsion and subsequent annealing. The resulting composite had a heterogeneous structure consisting of ductile aluminum matrix and hard intermetallic inclusions with a gradient decrease in grain size and layer thickness when moving from the center to the periphery of the sample. Precipitation of \(\hbox {Al}_{2}\hbox {Cu}\) intermetallic phase was revealed at the edge of the sample in the as-deformed state. Post-deformation annealing initiated the emergence of AlCu and \(\hbox {Al}_{\mathrm {4}}\hbox {Cu}_{\mathrm {9}}\) intermetallic precipitates with increased hardness compared to strain-induced \(\hbox {Al}_{\mathrm {2}}\hbox {Cu}\) particles. The growth kinetics of intermetallic compounds was obtained using precise X-ray phase analysis. It was found that the initial growth of intermetallic phases at temperatures 150–210 \(^{\circ }\)C depends on time \(t^{1/2}\), indicating the bulk diffusion-controlled growth. The growth activation energy of Al\(_2\)Cu and AlCu phases was calculated to be 0.48 and 0.33 eV, respectively. The results obtained contribute to an understanding of the kinetics of annealing-induced growth of intermetallic phases and the corresponding evolution of strength characteristics in Al–Cu–Al composites. It was revealed that thermal treatment regimes resulting in enhanced mechanical properties are associated with moderate time and temperature of annealing, which allows avoiding partial dissolution of strengthening phases. The applied approach of phase kinetics analysis can become the basis for the development of new energy-efficient heat treatment modes of in situ Al-based composites allowing to govern their heterogeneity type and tailoring the mechanical properties of the material.



中文翻译:

高压扭转作用下Al-Cu-Al复合材料的退火诱导相变和硬度演变

多层块状Al-Cu-Al金属基复合材料是通过高压扭力和随后的退火工艺制成的。所得复合材料具有由延展性铝基体和硬金属间夹杂物组成的异质结构,当从样品的中心向外围移动时,晶粒尺寸和层厚度会逐渐减小。在变形后的样品边缘发现了\(\ hbox {Al} _ {2} \ hbox {Cu} \)金属间相的沉淀。变形后退火引发了AlCu和\(\ hbox {Al} _ {\ mathrm {4}} \ hbox {Cu} _ {\ mathrm {9}} \)的出现,与应变诱导相比,金属间沉淀物的硬度增加\(\ hbox {Al} _ {\ mathrm {2}} \ hbox {Cu} \)粒子。金属间化合物的生长动力学是使用精确的X射线相分析获得的。结果发现,金属间相在150–210 \(^ {\ circ} \)温度下的初始生长 取决于时间\(t ^ {1/2} \),表明整体扩散受控生长。Al \(_ 2 \)的生长活化能计算得出Cu和AlCu相分别为0.48和0.33 eV。获得的结果有助于理解退火诱导的金属间相的生长动力学以及Al–Cu–Al复合材料强度特性的相应演变。揭示了导致增强的机械性能的热处理方案与适度的退火时间和温度有关,这可以避免强化相的部分溶解。相动力学分析的应用方法可以成为开发原位铝基复合材料新型节能热处理模式的基础,从而可以控制其非均质类型并调整材料的机械性能。

更新日期:2021-01-10
down
wechat
bug