当前位置: X-MOL 学术IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Downward-looking Linear Array Three-Dimensional SAR Imaging based on Two-Dimensional Mismatch Compensation
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing ( IF 5.5 ) Pub Date : 2020-01-01 , DOI: 10.1109/jstars.2020.3043523
Le Kang , Tian-Chi Sun , Ying Luo , Qun Zhang , Jia-Cheng Ni

For downward-looking linear array (DLLA) three-dimensional (3-D) synthetic aperture radar (SAR), it is necessary to realize the super-resolution in both azimuth and cross-track direction due to the limited lengths of the synthetic aperture and the linear array. As all the scatterers are assumed on the uniform grids, the cross-track super-resolution can be achieved by 1-D compressed sensing. In the real imaging system, however, the gridding error should be considered because the biased scatterers lead to the mismatch of the measurement matrix and affect the imaging performance. The 1-D mismatch in cross-track direction has been solved by atomic norm minimization and off-grid sparse Bayesian inference. With the development of the super-resolution methods, the 2-D super-resolution in both azimuth and cross-track direction is realized by the 2-D compressed sensing (CS) algorithms. To solve the 2-D mismatch problem, a novel 2-D mismatch compensation method for DLLA 3-D SAR is proposed. Instead of converting the 2-D matrix signals to the 1-D vectors, the proposed method directly processes the 2-D mismatch with 2-D joint model. Furthermore, the 2-D joint model with 2-D mismatch is simplified as a normal sparse linear model, which is suitable for most of the CS reconstruction algorithms. It can not only provide better reconstruction performance but also reduce the memory cost and computation load. Finally, the simulation experiments are shown to demonstrate the validity of the proposed method.

中文翻译:

基于二维失配补偿的下视线阵三维SAR成像

对于下视线阵(DLLA)三维(3-D)合成孔径雷达(SAR),由于合成孔径长度有限,需要在方位角和横道方向上实现超分辨率和线性阵列。由于所有散射体都假设在均匀网格上,因此可以通过一维压缩感知来实现跨轨道超分辨率。然而,在实际成像系统中,由于散射体的偏差会导致测量矩阵的失配,影响成像性能,因此需要考虑网格误差。跨轨道方向的一维失配已通过原子范数最小化和离网稀疏贝叶斯推理解决。随着超分辨率方法的发展,方位角和跨航迹方向的二维超分辨率通过二维压缩感知 (CS) 算法实现。为解决二维失配问题,提出了一种新的DLLA 3-D SAR二维失配补偿方法。所提出的方法不是将二维矩阵信号转换为一维向量,而是直接处理二维联合模型的二维失配。此外,具有二维失配的二维联合模型被简化为正常的稀疏线性模型,适用于大多数CS重建算法。它不仅可以提供更好的重构性能,还可以降低内存成本和计算负载。最后,仿真实验证明了所提出方法的有效性。提出了一种用于 DLLA 3-D SAR 的新型 2-D 失配补偿方法。所提出的方法不是将二维矩阵信号转换为一维向量,而是直接处理二维联合模型的二维失配。此外,具有二维失配的二维联合模型被简化为正常的稀疏线性模型,适用于大多数CS重建算法。它不仅可以提供更好的重构性能,还可以降低内存成本和计算负载。最后,仿真实验证明了所提出方法的有效性。提出了一种用于 DLLA 3-D SAR 的新型 2-D 失配补偿方法。所提出的方法不是将二维矩阵信号转换为一维向量,而是直接处理二维联合模型的二维失配。此外,具有二维失配的二维联合模型被简化为正常的稀疏线性模型,适用于大多数CS重建算法。它不仅可以提供更好的重构性能,还可以降低内存成本和计算负载。最后,仿真实验证明了所提出方法的有效性。这适用于大多数 CS 重建算法。它不仅可以提供更好的重构性能,还可以降低内存成本和计算负载。最后,仿真实验证明了所提出方法的有效性。这适用于大多数 CS 重建算法。它不仅可以提供更好的重构性能,还可以降低内存成本和计算负载。最后,仿真实验证明了所提出方法的有效性。
更新日期:2020-01-01
down
wechat
bug