当前位置: X-MOL 学术J. Vac. Sci. Technol. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Review of key vertical-cavity laser and modulator advances enabled by advanced MBE technology
Journal of Vacuum Science & Technology A ( IF 2.4 ) Pub Date : 2020-11-30 , DOI: 10.1116/6.0000574
Larry A. Coldren 1
Affiliation  

In this special issue honoring Professor Arthur Gossard, I am delighted to be able to review a small segment of the work he has enabled while at UCSB on the subject of the title, but further limited to devices grown all-epitaxially. When he arrived in 1987 from Bell Labs, he had already been consulting on the installation of our new Gen-II MBE that we intended to use for vertical-cavity Fabry–Pérot modulators, devices somewhat similar to those he had grown at Bell Labs. However, within a couple of years, we obtained leading results on reflection modulators, moving the on/off contrast from prior values of less than 5:1 to more than 50:1 with insertion losses of less than 2 dB, required voltages in the 2–4 V range, and changes in reflection per volt to ∼20%/V. These had multiple-quantum-well (MQW) active regions to phase shift and partially absorb the resonant lightwaves within a cavity formed between two distributed-Bragg-reflector (DBR) mirrors all formed in the AlGaAs/GaAs system. Also in this same period, novel vertical-cavity surface-emitting laser (VCSEL) structures analogous to the modulators were developed. They had strained InGaAs/GaAs MQW actives and AlGaAs/GaAs DBRs and operated near 980 nm. The initial new idea was to place active quantum wells only at the maxima of the cavity E-field standing wave, which provides nearly a doubling of the modal gain they contribute. These designs quickly led to leading results in threshold current (<1 kA/cm2—1990 and Ith < 1 mA with Po > 1 mW—1991), power out (up to 113 mW cw—1993), and temperature stability with gain offset (constant output over 50 °C—1993). Additional notable results in the 1990s included a selective oxidation of AlGaAs to form lens-like intra-cavity apertures for dramatic reductions in optical cavity loss; the first strained layer InGaAlAs/GaAs 850 nm VCSELs; and an 8-wavelength division multiplexing VCSEL array integrated within a 60 μm diameter for direct emission into a multimode fiber. In the 2000s, results included all-epitaxially grown 1310 nm and 1550 nm VCSELs that employed AlGaAsSb DBRs and AlGaInAs actives with tunnel junctions to enable two n-type contacts on InP for low thermal and electrical resistance; multi-terminal VCSELs for polarization modulation to double the information output on a single optical beam; and a novel high-speed, high-efficiency design that incorporated sophisticated bandgap engineering in the DBRs and carbon doping for low optical loss and electrical resistance, midlevel Al-content mirror layers near the cavity for deep oxidation to reduce capacitance, and a redesigned lens-like aperture for reduced mode volume. This latter design gave record modulation bandwidth and efficiency results then, and it is still being used around the world for the leading results today. In the most recent decade, InGaAsSb/AlGaAsSb/GaSb materials for VCSELs and photonic ICs have been studied for emission in the 2–4 μm wavelength range.

中文翻译:

回顾先进MBE技术支持的关键垂直腔激光器和调制器的发展

在纪念Arthur Gossard教授的特刊中,我很高兴能够回顾他在UCSB期间就该主题所做的一小部分工作,但进一步限于全外延生长的设备。1987年,他从贝尔实验室(Bell Labs)到达时,他已经在为我们的第二代MBE的安装提供咨询,我们打算将其用于垂直腔法布里-珀罗调制器,这种设备与他在贝尔实验室生产的设备有些相似。然而,在几年之内,我们在反射调制器上取得了领先的成果,将开/关对比度从先前的小于5:1的值移至大于50:1,插入损耗小于2 dB的情况下, 2–4 V范围,每伏反射变化至〜20%/ V。这些具有多个量子阱(MQW)有源区,以进行相移并部分吸收在全部形成于AlGaAs / GaAs系统中的两个分布式布拉格反射器(DBR)镜之间形成的腔体内的共振光波。同样在同一时期,开发了类似于调制器的新型垂直腔表面发射激光器(VCSEL)结构。他们使InGaAs / GaAs MQW活性物质和AlGaAs / GaAs DBR应变,并在980 nm附近工作。最初的新想法是将有源量子阱仅放置在腔电场驻波的最大值处,这将其贡献的模态增益几乎提高了一倍。这些设计迅速导致领先的阈值电流(<1 kA / cm 同样在同一时期,开发了类似于调制器的新型垂直腔表面发射激光器(VCSEL)结构。他们使InGaAs / GaAs MQW活性物质和AlGaAs / GaAs DBR应变,并在980 nm附近工作。最初的新想法是将有源量子阱仅放置在腔电场驻波的最大值处,这将其贡献的模态增益几乎提高了一倍。这些设计迅速导致领先的阈值电流(<1 kA / cm 同样在同一时期,开发了类似于调制器的新型垂直腔表面发射激光器(VCSEL)结构。他们使InGaAs / GaAs MQW活性物质和AlGaAs / GaAs DBR应变,并在980 nm附近工作。最初的新想法是将有源量子阱仅放置在腔电场驻波的最大值处,这将其贡献的模态增益几乎提高了一倍。这些设计迅速导致领先的阈值电流(<1 kA / cm 这几乎是它们贡献的模态增益的两倍。这些设计迅速导致领先的阈值电流(<1 kA / cm 这几乎是它们贡献的模态增益的两倍。这些设计迅速导致领先的阈值电流(<1 kA / cm2 -1990和I th  <1 mA,P o  > 1 mW-1991),断电(高达113 mW cw-1993)和具有增益偏移的温度稳定性(在50°C-1993上恒定输出)。1990年代的其他显著成果包括AlGaAs的选择性氧化,形成了类似透镜的腔内孔径,从而大大降低了光学腔的损耗。第一应变层InGaAlAs / GaAs 850nm VCSEL;和一个8波分复用VCSEL阵列集成在60内 μ直接发射到多模光纤的直径 在2000年代,结果包括全外延生长的1310 nm和1550 nm VCSEL,这些VCSEL采用AlGaAsSb DBR和AlGaInAs有源层并具有隧道结,可在InP上实现两个n型接触,从而降低热阻和电阻。用于偏振调制的多端子VCSEL,可将单个光束上的信息输出加倍;以及新颖的高速高效设计,该技术在DBR中集成了先进的带隙技术,并进行了碳掺杂以降低光损耗和电阻,在腔体附近添加了中层铝含量镜面层,以进行深度氧化以减小电容,并重新设计了透镜类似的光圈可减少模式音量。后一种设计提供了创纪录的调制带宽和效率结果,如今,它仍在全球范围内用于领先的结果。在最近的十年中,已经研究了用于VCSEL和光子IC的InGaAsSb / AlGaAsSb / GaSb材料在2-4 μ米的波长范围。
更新日期:2021-01-08
down
wechat
bug