当前位置: X-MOL 学术J. Vac. Sci. Technol. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Vacuum ultraviolet enhanced atomic layer etching of ruthenium films
Journal of Vacuum Science & Technology A ( IF 2.9 ) Pub Date : 2020-12-24 , DOI: 10.1116/6.0000742
Brennan M. Coffey 1 , Himamshu C. Nallan 1 , John G. Ekerdt 1
Affiliation  

Vacuum ultraviolet (VUV) enhanced atomic layer etching (ALE) of thin (∼8 nm) Ru films is demonstrated. Oxidation half-cycles of 2–5 min VUV/O2 co-exposure are used to oxidize near-surface Ru to RuO2 at 1 Torr O2 and 100–150 °C. In situ x-ray photoelectron spectroscopy measurements indicate that RuO2 formation saturates after ∼5 min of VUV/O2 exposure at 100 and 150 °C. The depth of Ru oxidation is limited by the rate of oxidation and can be controlled with substrate temperature and exposure time. Etching half-cycles are performed by exposing the oxidized Ru film to HCOOH vapor at 0.50 Torr for 30 s isothermally, which results in the removal of the oxidized Ru layer. The amount of Ru removed per ALE cycle is determined by comparing ex situ x-ray reflectivity (XRR) measurements of the film before and after etching. When using 2 min VUV/O2 co-exposure, approximately 0.8 and 0.9 Å of Ru is etched per cycle at 100 and 150 °C, respectively. XRR and atomic force microscopy measurements indicate that the as-deposited and sputtered Ru film surface becomes smoother as ALE is performed. The etch rate decreases with ALE cycles and corresponds to a slowing oxidation rate, which is likely associated with the decrease in surface roughness. Density functional theory is used to study the adsorption of oxidants in a model Ru system, and nudged elastic band (NEB) calculations describe O diffusion into the Ru substrate by following an O “probe” atom as it moves between Ru(002) atomic planes with 0.50 monolayer (ML) O on the surface. NEB results reveal an approximate energetic barrier to diffusion, Ea, of 5.10 eV for O to move through the second and third atomic Ru layers when O, which can form an RuOx species, is subsurface. This Ea is in excess of the energetic gain of 4.23 eV in adsorbing an O atom to Ru(002) with 0.50 ML O. The difference in Ea and the adsorption energy likely contributes to the self-limiting nature of the oxidation and explains the observation that VUV/O2 co-exposure time must be increased to allow additional time for O diffusing into the subsurface as it overcomes the barrier to subsurface O diffusion. The self-limiting oxidation of Ru arising from VUV/O2 at low temperatures, in turn, enables an ALE process for Ru.

中文翻译:

真空紫外线增强钌膜原子层刻蚀

证明了Ru(〜8 nm)薄膜的真空紫外(VUV)增强原子层蚀刻(ALE)。在1 Torr O 2和100–150°C下,使用2-5分钟的VUV / O 2共暴露氧化半周期将近表面Ru氧化为RuO 2原位X射线光电子能谱测量表明,VUV / O 2约5分钟后RuO 2形成饱和暴露在100和150°C下。Ru氧化的深度受氧化速率的限制,可以通过基板温度和曝光时间进行控制。通过将氧化后的Ru膜在0.50 Torr的HCOOH蒸气中等温暴露30 s,进行蚀刻半循环,从而去除了氧化后的Ru层。每ALE周期除去钌的量是通过比较确定易地前和蚀刻后的膜的X射线反射率(XRR)测量。使用2分钟VUV / O 2时共暴露时,在100和150°C下每个循环分别蚀刻约0.8和0.9Å的Ru。XRR和原子力显微镜测量表明,随着ALE的进行,沉积和溅射的Ru膜表面变得更光滑。刻蚀速率随着ALE循环而降低,并且对应于缓慢的氧化速率,这很可能与表面粗糙度的降低有关。密度泛函理论用于研究模型Ru系统中氧化剂的吸附,微动弹性带(NEB)计算通过跟随O“探针”原子在Ru(002)原子面之间移动来跟踪O扩散到Ru基体中的过程。表面上具有0.50单层(ML)O的表面。NEB结果显示大约能垒扩散,E当能形成RuO x的O位于表面以下时,O的5.10 eV可以穿过第二和第三原子Ru层。此电子一个是在过量的4.23电子伏特的能量增益的与0.50 ML O.吸附O原子与Ru(002)在E中的差一个且可能有助于吸附能量到氧化的自限制性质,并解释观察到,必须增加VUV / O 2共同暴露时间,以便为O扩散到地下提供更多的时间,因为它克服了地下O扩散的障碍。反过来,在低温下由VUV / O 2引起的Ru的自限氧化作用使得ALE可以进行ALE处理。
更新日期:2021-01-08
down
wechat
bug