当前位置: X-MOL 学术Phys. Rev. Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Infinite-stage Nernst-Ettingshausen Cryocooler for Practical Applications
Physical Review Applied ( IF 4.6 ) Pub Date : 2021-01-08 , DOI: 10.1103/physrevapplied.15.014011
M. Mobarak Hossain Polash , Daryoosh Vashaee

Recent developments in Nernst-Ettingshausen (NE) physical phenomena combined with advances in the performance of rare-earth permanent magnets make thermomagnetic (TM) cryocoolers well suited for practical applications. The device performance of a NE cryocooler depends on both the material and the geometric shape of the device. Despite continued progress in TM materials, the optimum shape is still based on a simplified infinite-stage model derived in 1963 by Harman [Adv. Energy Convers. 3(4), 667–676 (1963)]. Harman's model assumes several nonrealistic assumptions, such as temperature-independent material properties and constant current density. We relax such assumptions and derive a fully-temperature-dependent numerical model to accurately solve for the thermomagnetic features of a NE cooler with arbitrary geometry. We correct Harman's analytical function and compare its performance with the performance of devices of various shapes. The corrected shape has a higher coefficient of performance (COP) at higher temperature differentials, which indicates that when the material resistivity is a strong function of the temperature, the corrected infinite-stage device can provide better performance than Harman's geometry. Moreover, the corrected infinite-shape device can provide higher heat flow density under a similar optimum-COP condition. A case study based on a state-of-the-art TM material, Bi-Sb alloy, is presented, and the critical parameters for designing an efficient thermomagnetic cooler are discussed in detail.

中文翻译:

实用的无限级Nernst-Ettingshausen低温冷却器

Nernst-Ettingshausen(NE)物理现象的最新发展以及稀土永磁体性能的提高,使得热磁(TM)低温制冷器非常适合实际应用。NE低温冷却器的设备性能取决于设备的材料和几何形状。尽管TM材料不断取得进步,但最佳形状仍基于Harman [ Adv。能源转换。3(4),667–676(1963)]。Harman模型假设了一些不切实际的假设,例如与温度无关的材料特性和恒定电流密度。我们放宽了这样的假设,并导出了一个完全依赖温度的数值模型,以精确求解具有任意几何形状的NE冷却器的热磁特征。我们更正了Harman的分析功能,并将其性能与各种形状的设备的性能进行了比较。校正后的形状在较高的温差下具有较高的性能系数(COP),这表明,当材料电阻率是温度的强函数时,校正后的无限级器件可以提供比Harman几何形状更好的性能。此外,在相似的最佳COP条件下,校正后的无限形状器件可以提供更高的热流密度。以最先进的TM材料为基础的案例研究,-- 提出了一种合金,并详细讨论了设计高效热磁冷却器的关键参数。
更新日期:2021-01-08
down
wechat
bug