当前位置: X-MOL 学术Pure Appl. Geophys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Investigation of Cloud Microphysical Features During the Passage of a Tropical Mesoscale Convective System: Numerical Simulations and X-Band Radar Observations
Pure and Applied Geophysics ( IF 1.9 ) Pub Date : 2021-01-01 , DOI: 10.1007/s00024-020-02622-w
Subrata Kumar Das , Anupam Hazra , Sachin M. Deshpande , U. V. Murali Krishna , Yogesh K. Kolte

This study examined a typical case of deep convective storm that formed over southwest India on October 12, 2011, using ground-based X-band radar measurements and Weather Research and Forecasting (WRF) model simulations. The radar observation showed isolated pockets of convective storm, which merged later to form a convective cluster. The observed storms were tall, extending well into the mixed-phase region. Few storms even extended up to the tropopause height. Three different WRF cloud microphysics schemes (WRF Double-Moment 6-Class, Morrison Double-Moment, and Milbrandt–Yau Double-Moment) were used to simulate the observed deep convective storm to examine the vertical structure of hydrometeors. All the cloud microphysics schemes were able to reproduce the convective storm event with a lag time of almost two and a half hours. The WRF Double-Moment 6-Class scheme better simulates the vertical structure of storm compared to the other two microphysics schemes. The WRF model reasonably simulated the observed patterns of convective storm when the WRF cloud microphysics scheme better simulate the graupel and snow. The differences in simulated storm structure obtained by different microphysics schemes compared to observation highlight the deficiency involved in the simulations in capturing the microphysics that is guiding the intensity of convective storms. The present study thus underscores the importance of microphysics in different parameterization schemes of WRF simulation over southwest India, which has an implication in the forecasting of convective storms.

中文翻译:

热带中尺度对流系统通过过程中云微物理特征的研究:数值模拟和 X 波段雷达观测

本研究使用地面 X 波段雷达测量和天气研究与预报 (WRF) 模型模拟,研究了 2011 年 10 月 12 日在印度西南部形成的典型深对流风暴案例。雷达观测显示出一些孤立的对流风暴,后来合并形成一个对流星团。观测到的风暴很高,很好地延伸到混合相区。很少有风暴甚至延伸到对流层顶高度。三种不同的 WRF 云微物理方案(WRF Double-Moment 6-Class、Morrison Double-Moment 和 Milbrandt-Yau Double-Moment)用于模拟观测到的深对流风暴以检查水凝物的垂直结构。所有云微物理方案都能够以近两个半小时的滞后时间重现对流风暴事件。与其他两种微物理方案相比,WRF Double-Moment 6-Class 方案更好地模拟了风暴的垂直结构。当WRF云微物理方案更好地模拟霰和雪时,WRF模型合理地模拟了观测到的对流风暴模式。与观测相比,不同微物理方案获得的模拟风暴结构的差异突出了模拟在捕捉引导对流风暴强度的微物理方面存在的不足。因此,本研究强调了微物理在印度西南部 WRF 模拟的不同参数化方案中的重要性,这对对流风暴的预测有影响。当WRF云微物理方案更好地模拟霰和雪时,WRF模型合理地模拟了观测到的对流风暴模式。与观测相比,不同微物理方案获得的模拟风暴结构的差异突出了模拟在捕捉引导对流风暴强度的微物理方面存在的不足。因此,本研究强调了微物理在印度西南部 WRF 模拟的不同参数化方案中的重要性,这对对流风暴的预测有影响。当WRF云微物理方案更好地模拟霰和雪时,WRF模型合理地模拟了观测到的对流风暴模式。与观测相比,不同微物理方案获得的模拟风暴结构的差异突出了模拟在捕捉引导对流风暴强度的微物理方面存在的不足。因此,本研究强调了微物理在印度西南部 WRF 模拟的不同参数化方案中的重要性,这对对流风暴的预测有影响。与观测相比,不同微物理方案获得的模拟风暴结构的差异突出了模拟在捕捉引导对流风暴强度的微物理方面存在的不足。因此,本研究强调了微物理在印度西南部 WRF 模拟的不同参数化方案中的重要性,这对对流风暴的预测有影响。与观测相比,不同微物理方案获得的模拟风暴结构的差异突出了模拟在捕捉引导对流风暴强度的微物理方面存在的不足。因此,本研究强调了微物理在印度西南部 WRF 模拟的不同参数化方案中的重要性,这对对流风暴的预测有影响。
更新日期:2021-01-01
down
wechat
bug