当前位置: X-MOL 学术Biotechnol. Biofuels › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhanced methane production from cellulose using a two-stage process involving a bioelectrochemical system and a fixed film reactor
Biotechnology for Biofuels ( IF 6.1 ) Pub Date : 2021-01-06 , DOI: 10.1186/s13068-020-01866-x
Kengo Sasaki , Daisuke Sasaki , Yota Tsuge , Masahiko Morita , Akihiko Kondo

It is desirable to improve the anaerobic digestion processes of recalcitrant materials, such as cellulose. Enhancement of methane (CH4) production from organic molecules was previously accomplished through coupling a bioelectrochemical system (BES); however, scaling-up BES-based production is difficult. Here, we developed a two-stage process consisting of a BES using low-cost and low-reactive carbon sheets as the cathode and anode, and a fixed film reactor (FFR) containing conductive material, i.e., carbon fiber textiles (CFTs) (:BES → FFR). By controlling the cathodic current at 2.7 μA/cm2 without abiotic H2 production, the three-electrode BES system was operated to mimic a microbial electrolysis cell. The thermophilic BES (inlet pH: 6.1) and FFR (inlet pH: 7.5) were operated using hydraulic retention times (HRTs) of 2.5 and 4.2 days, respectively, corresponding to a cellulose load of 3555.6 mg-carbon (C)/(L day). The BES → FFR process achieved a higher CH4 yield (37.5%) with 52.8 vol% CH4 in the product gas compared to the non-bioelectrochemical system (NBES) → FFR process, which showed a CH4 yield of 22.1% with 46.8 vol% CH4. The CH4 production rate (67.5 mM/day) obtained with the BER → FFR process was much higher than that obtained using electrochemical methanogenesis (0.27 mM/day). Application of the electrochemical system or CFTs improved the yields of CH4 with the NBES → FFR or BES → non-fixed film reactor process, respectively. Meta 16S rRNA sequencing revealed that putative cellulolytic bacteria (identified as Clostridium species) were present in the BES and NBES, and followed (BES→ and NBES→) FFR. Notably, H2-consuming methanogens, Methanobacterium sp. and Methanosarcina sp., showed increased relative abundances in the suspended fraction and attached fraction of (BES→) FFR, respectively, compared to that of (NBES→) FFR, although these methanogens were observed at trace levels in the BES and NBES. These results indicate that bioelectrochemical preprocessing at a low current effectively induces interspecies H2 transfer in the FFR with conductive material. Sufficient electrochemical preprocessing was observed using a relatively short HRT. This type of two-stage process, BES → FFR, is useful for stabilization and improvement of the biogas (CH4) production from cellulosic material, and our results imply that the two-stage system developed here may be useful with other recalcitrant materials.

中文翻译:

使用涉及生物电化学系统和固定膜反应器的两步法提高纤维素的甲烷生产量

期望改善顽固性材料例如纤维素的厌氧消化过程。以前通过偶联生物电化学系统(BES)可以提高有机分子产生的甲烷(CH4)的能力。但是,很难扩大基于BES的生产。在这里,我们开发了一个两阶段的过程,包括使用低成本和低反应性碳片作为阴极和阳极的BES,以及包含导电材料(即碳纤维织物(CFT))的固定膜反应器(FFR)( :BES→FFR)。通过在不产生非生物氢气的情况下将阴极电流控制在2.7μA/ cm2,三电极BES系统可模拟微生物电解池。高温BES(入口pH:6.1)和FFR(入口pH:7.5)的水力停留时间(HRT)为2.5天和4.2天,分别对应于3555.6 mg-碳(C)/(L天)的纤维素负载量。与非生物电化学系统(NBES)→FFR工艺相比,BES→FFR工艺在产品气中的CH4收率为52.8体积%,CH4收率更高(37.5%),在46.8 vol%的CH4中,CH4的收率为22.1%。 。通过BER→FFR工艺获得的CH4生产率(67.5 mM /天)远高于使用电化学甲烷化获得的CH4生产率(0.27 mM /天)。电化学系统或CFT的应用分别通过NBES→FFR或BES→非固定膜反应器工艺提高了CH4的产率。Meta 16S rRNA测序表明,假定的纤维素分解细菌(鉴定为梭菌属)存在于BES和NBES中,然后是(BES→和NBES→)FFR。值得注意的是,消耗H2的产甲烷菌Methanobacterium sp.。和(Methanosarcina sp。)和(NBES→)FFR的悬浮部分和附着部分的相对丰度分别比(NBES→)FFR的增加,尽管这些产甲烷菌在BES和NBES中的痕量水平被观察到。这些结果表明,在低电流下进行生物电化学预处理可以有效地诱导FFR中具有导电材料的种间H2转移。使用相对较短的HRT可以观察到足够的电化学预处理。BES→FFR这样的两阶段过程可用于稳定和改善纤维素材料产生的沼气(CH4),我们的结果表明此处开发的两阶段系统可能与其他难降解材料一起使用。与(NBES→)FFR相比,尽管这些产甲烷菌在BES和NBES中以痕量水平被观察到。这些结果表明,在低电流下进行生物电化学预处理可以有效地诱导FFR中具有导电材料的种间H2转移。使用相对较短的HRT可以观察到足够的电化学预处理。BES→FFR这样的两阶段过程可用于稳定和改善纤维素材料产生的沼气(CH4),我们的结果表明,此处开发的两阶段系统可能与其他难降解材料一起使用。与(NBES→)FFR相比,尽管这些产甲烷菌在BES和NBES中以痕量水平被观察到。这些结果表明,在低电流下进行生物电化学预处理可以有效地诱导FFR中具有导电材料的种间H2转移。使用相对较短的HRT可以观察到足够的电化学预处理。BES→FFR这样的两阶段过程可用于稳定和改善纤维素材料产生的沼气(CH4),我们的结果表明此处开发的两阶段系统可能与其他难降解材料一起使用。这些结果表明,在低电流下进行生物电化学预处理可以有效地诱导FFR中具有导电材料的种间H2转移。使用相对较短的HRT可以观察到足够的电化学预处理。BES→FFR这样的两阶段过程可用于稳定和改善纤维素材料产生的沼气(CH4),我们的结果表明,此处开发的两阶段系统可能与其他难降解材料一起使用。这些结果表明,在低电流下进行生物电化学预处理可以有效地诱导FFR中具有导电材料的种间H2转移。使用相对较短的HRT可以观察到足够的电化学预处理。BES→FFR这样的两阶段过程可用于稳定和改善纤维素材料产生的沼气(CH4),我们的结果表明此处开发的两阶段系统可能与其他难降解材料一起使用。
更新日期:2021-01-07
down
wechat
bug