当前位置: X-MOL 学术Meas. Control › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Optimization and selection of Galileo triple-frequency carrier linear combination
Measurement and Control ( IF 1.3 ) Pub Date : 2021-01-06 , DOI: 10.1177/0020294020983386
Jun Wang 1 , Xurong Dong 1 , Wei Fu 2 , Di Yan 3 , Zengkai Shi 1
Affiliation  

The triple-frequency linear combination with a low noise, a long wavelength, and a weak ionosphere is beneficial to effectively eliminate or weaken the common errors, advance the reliability of cycle slip detection and repair, and speed up the convergence time of fixed ambiguity. By establishing the Galileo triple-frequency carrier linear combination model, three types of linear combinations are derived: Geometry-free (GF) combinations, minimum noise (MN) combinations, and ionosphere-free (IF) combinations. The geometric relationships of these linear combinations are displayed in the form of image. The results indicate that the angle formed by the IF combinations and the MN combinations is between 75.02° and 86.01°, which also illustrates that it is more difficult to meet the carrier phase combinations with a low noise and a weak ionosphere. Moreover, to guarantee the integer cycle characteristics of ambiguity, the combination coefficient must be an integer. Galileo triple-frequency linear combination is solved utilizing the extremum method. To sum up, the sum of the coefficients of the extra wide lane (EWL) combinations and wide lane (WL) combinations is zero, and the sum of the coefficients of the narrow lane (NL) combinations is one. (0, 1, −1) is the optimal triple-frequency linear combination in Galileo. Three independent linear combinations are selected separately from the EWL, WL, and NL to jointly solve the integer ambiguity. Further, it creates a prerequisite for high-precision and real-time kinematic positioning.



中文翻译:

Galileo三频载波线性组合的优化与选择

低噪声,长波长,电离层弱的三频线性组合,有利于有效消除或减弱常见误差,提高周跳检测和修复的可靠性,加快固定模糊度的收敛时间。通过建立伽利略三频载波线性组合模型,可以得出三种类型的线性组合:无几何(GF)组合,最小噪声(MN)组合和无电离层(IF)组合。这些线性组合的几何关系以图像形式显示。结果表明,中频组合和MN组合形成的夹角在75.02°和86.01°之间,这也说明以低噪声和弱电离层满足载流子组合更为困难。而且,为了保证歧义的整数循环特性,组合系数必须是整数。利用极值法求解伽利略三频线性组合。总之,超宽车道(EWL)组合和宽车道(WL)组合的系数之和为零,而窄车道(NL)组合的系数之和为一。(0,1,-1)是伽利略中的最佳三频线性组合。从EWL,WL和NL中分别选择三个独立的线性组合,以共同解决整数歧义问题。此外,它为高精度和实时运动学定位创造了先决条件。利用极值法求解伽利略三频线性组合。总之,超宽车道(EWL)组合和宽车道(WL)组合的系数之和为零,而窄车道(NL)组合的系数之和为一。(0,1,-1)是伽利略中的最佳三频线性组合。从EWL,WL和NL中分别选择三个独立的线性组合,以共同解决整数歧义问题。此外,它为高精度和实时运动学定位创造了先决条件。利用极值法求解伽利略三频线性组合。总之,超宽车道(EWL)组合和宽车道(WL)组合的系数之和为零,而窄车道(NL)组合的系数之和为一。(0,1,-1)是伽利略中的最佳三频线性组合。从EWL,WL和NL中分别选择三个独立的线性组合,以共同解决整数歧义问题。此外,它为高精度和实时运动学定位创造了先决条件。-1)是伽利略中的最佳三频线性组合。从EWL,WL和NL中分别选择三个独立的线性组合,以共同解决整数歧义问题。此外,它为高精度和实时运动学定位创造了先决条件。-1)是伽利略中的最佳三频线性组合。从EWL,WL和NL中分别选择三个独立的线性组合,以共同解决整数歧义问题。此外,它为高精度和实时运动学定位创造了先决条件。

更新日期:2021-01-07
down
wechat
bug