当前位置: X-MOL 学术Sci. Technol. Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Temperature-dependent electronic structure of bixbyite α-Mn2O3 and the importance of a subtle structural change on oxygen electrocatalysis
Science and Technology of Advanced Materials ( IF 7.4 ) Pub Date : 2021-01-07
Junais Habeeb Mokkath, Maryam Jahan, Masahiko Tanaka, Satoshi Tominaka, Joel Henzie

ABSTRACT

Bixbyite α -Mn2O3 is an inexpensive Earth-abundant mineral that can be used to drive both oxygen evolution (OER) and oxygen reduction reactions (ORR) in alkaline conditions. It possesses a subtle orthorhombic cubic phase change near room temperature that suppresses Jahn-Teller distortions and presents a unique opportunity to study how atomic structure affects the electronic structure and catalytic activity at a temperature range that is easily accessible in OER/ORR experiments. Previously, we observed that heat-treated α -Mn2O3 had better performance as a bifunctional catalyst in the oxygen evolution (OER) and oxygen reduction reactions (ORR) (Dalton Trans. 2016, 45, 18494-18501). We hypothesized that heat-treatment pinned the material into a more electrochemically active cubic phase. In this manuscript, we use high-resolution X-ray diffraction to collect the temperature-dependent structures of α -Mn2O3, and then input them into ab initio calculations. The electronic structure calculations indicate that the orthorhombic cubic phase transition causes the Mn 3d and O 2p bands to overlap and mix covalently, transforming α -Mn2O3 from a semiconductor to a semimetal. This subtle change in structure also modifies Mn-O-Mn bond distances, which may improve the activity of the material in oxygen electrochemistry. OER and ORR experiments were performed using the same electrode at various temperatures. They show a jump in the exchange current density near the phase change temperature, demonstrating the higher activity of the cubic phase.



中文翻译:

方铁锰矿α-Mn2O3的温度依赖性电子结构以及微结构变化对氧电催化的重要性

摘要

比克斯比 α -Mn 2 O 3是一种廉价的地球上富足的矿物,可用于在碱性条件下驱动氧气释放(OER)和氧气还原反应(ORR)。具有微妙的斜方晶系 室温附近的立方相变抑制了Jahn-Teller畸变,并提供了一个独特的机会来研究在OER / ORR实验容易达到的温度范围内原子结构如何影响电子结构和催化活性。以前,我们观察到 α -Mn 2 O 3在氧气析出(OER)和氧气还原反应(ORR)中作为双功能催化剂具有更好的性能(Dalton Trans .2016,45,18494-18501)。我们假设热处理将材料固定在更具电化学活性的立方相中。在本手稿中,我们使用高分辨率X射线衍射来收集与温度相关的结构 α -Mn 2 O 3,然后将它们输入从头算。电子结构计算表明正交晶 立方相变导致Mn 3 d和O 2 p带重叠并共价混合, α -Mn 2 O 3从半导体到半金属。这种微妙的结构变化也改变了Mn-O-Mn键距,这可以提高材料在氧电化学中的活性。使用同一电极在不同温度下进行OER和ORR实验。它们在相变温度附近显示出交换电流密度的跃变,表明立方相的活性更高。

更新日期:2021-01-07
down
wechat
bug