当前位置: X-MOL 学术Water Resour. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Simulation of Colloid Transport and Retention Using a Pore‐Network Model With Roughness and Chemical Heterogeneity on Pore Surfaces
Water Resources Research ( IF 5.4 ) Pub Date : 2021-01-06 , DOI: 10.1029/2020wr028571
Dantong Lin 1, 2 , Liming Hu 1 , Scott Alan Bradford 2 , Xinghao Zhang 1 , Irene M.C. Lo 3
Affiliation  

Colloid transport and retention in porous media is a common phenomenon in both nature and industry. However, many questions remain on how to obtain colloid transport and retention parameters. Previous work usually assumed constant transport parameters in a medium under a given physicochemical condition. In this study, pore‐network modeling is employed to upscale colloid transport and retention from the pore‐scale to the macro‐scale. The pore‐scale transport parameters including the collection efficiency (η), the sticking efficiency (α), and the fraction of the solid‐water interface that contributes to the colloid attachment (Sf) are obtained using numerical simulation and probability analysis for each pore throat. The influence of roughness and charge heterogeneity on the distribution of pore‐scale parameters is discussed. Breakthrough curves and the retention profiles under different roughness and charge heterogeneity conditions are also analyzed. Results show that pore‐scale parameters η, α, and Sf have various distributions in porous media that may not be accurately described using single‐valued effective parameters. The value of η decreases with velocity and exhibits a wide distribution under low‐velocity conditions. The parameter α tends to decrease with the colloid size and the pore water velocity and increased with the charge heterogeneity fraction. Nanoscale roughness alters α in a non‐monotonic fashion but tends to increase for lower roughness fractions and zeta potential. Microscopic roughness increases values of α for colloids that would otherwise be susceptible to hydrodynamic removal. Breakthrough curves and retention profiles show that more retention occurs for smaller particles, which reflects the influence of blocking.

中文翻译:

使用具有孔表面粗糙度和化学异质性的孔网络模型模拟胶体的运输和保留

胶体在多孔介质中的运输和保留是自然界和工业界的普遍现象。但是,关于如何获得胶体转运和保留参数仍有许多问题。先前的工作通常在给定的理化条件下,假设介质中的转运参数恒定。在这项研究中,孔隙网络模型被用来将胶体从孔隙尺度到宏观尺度的迁移和保留从上到下。孔垢传输参数包括收集效率(η),粘附效率(α)以及有助于胶体附着的固水界面分数(S f)是使用数值模拟和概率分析为每个孔喉获得的。讨论了粗糙度和电荷异质性对孔尺度参数分布的影响。还分析了不同粗糙度和电荷异质性条件下的穿透曲线和保留曲线。结果表明,孔隙度参数ηαS f在多孔介质中具有各种分布,使用单值有效参数可能无法准确描述。η的值随速度降低,在低速条件下表现出较宽的分布。参数α趋于随着胶体尺寸和孔隙水速度的减小而减小,并随电荷异质性分数的增加而增大。纳米级粗糙度以非单调的方式改变α,但随着较低的粗糙度分数和zeta电位而趋于增加。微观粗糙度会增加胶体的α值,否则胶体很容易被流体动力去除。突破曲线和保留曲线表明,较小的颗粒发生更多的保留,这反映了阻塞的影响。
更新日期:2021-02-23
down
wechat
bug