当前位置: X-MOL 学术Physica E Low Dimens. Syst. Nanostruct. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Substitutional boron doping of graphene using diborane in CVD
Physica E: Low-dimensional Systems and Nanostructures ( IF 2.9 ) Pub Date : 2021-01-07 , DOI: 10.1016/j.physe.2021.114629
Recep Zan , Ali Altuntepe , Serkan Erkan

This paper reports on a few layer boron doped graphene with high homogeneity, stability and size. To achieve this, we employed diborane to synthesize a boron doped graphene film in a CVD system. During synthesis, we investigated the effect of diborane flow and growth time on copper foil to optimize doped graphene growth conditions. Raman spectroscopy, XPS, EDXS and ellipsometer were employed for the characterization of the doped graphene films. The results of our study enabled the design of a recipe for thin film boron doped graphene growth with optimum optical transmission values. We further found that increasing the flow of diborane from 10 to 30 sccm and growth times from 10 to 30 min leads to the formation of thicker graphene films. However, we discovered that a few layer graphene film with high homogeneity could be obtained for the film that was grown using 10 sccm diborane along with 30-min growth time. The doping was confirmed by observing the shift in the Raman spectra peaks and XPS measurements in comparison to single layer pristine graphene. The study also revealed that boron atoms substituted carbon atoms in the honeycomb structure as confirmed by XPS measurements, which also provide the doping rate to be 2.4%. Our study has significant implications regarding substitutional doping which enables the doping to be stable for a long time, and this is crucial for the doped graphene to be employed in semiconducting technology particularly in optoelectronics.



中文翻译:

CVD中使用乙硼烷的石墨烯取代硼掺杂

本文报道了具有高均质性,稳定性和尺寸的几层掺硼石墨烯。为此,我们采用乙硼烷在CVD系统中合成了掺硼的石墨烯薄膜。在合成过程中,我们研究了乙硼烷流量和生长时间对铜箔的影响,以优化掺杂石墨烯的生长条件。拉曼光谱,XPS,EDXS和椭圆仪用于表征掺杂的石墨烯薄膜。我们的研究结果使能够设计出具有最佳光学透射率的薄膜硼掺杂石墨烯生长的配方。我们进一步发现,乙硼烷的流量从10 sccm增加到30 sccm,生长时间从10 min增加到30 min导致形成较厚的石墨烯薄膜。然而,我们发现,使用10 sccm乙硼烷和30分钟的生长时间生长的薄膜可以获得几层具有高均质性的石墨烯薄膜。与单层原始石墨烯相比,通过观察拉曼光谱峰的位移和XPS测量来确认掺杂。研究还表明,通过XPS测量证实,硼原子取代了蜂窝结构中的碳原子,其掺杂率也为2.4%。我们的研究对替代掺杂具有重要意义,该替代掺杂可使掺杂在很长一段时间内保持稳定,这对于将掺杂的石墨烯用于半导体技术(尤其是光电子学)至关重要。与单层原始石墨烯相比,通过观察拉曼光谱峰的位移和XPS测量来确认掺杂。研究还表明,通过XPS测量证实,硼原子取代了蜂窝结构中的碳原子,其掺杂率也为2.4%。我们的研究对替代掺杂具有重要意义,该替代掺杂可使掺杂在很长一段时间内保持稳定,这对于将掺杂的石墨烯用于半导体技术(尤其是光电子学)至关重要。与单层原始石墨烯相比,通过观察拉曼光谱峰的位移和XPS测量来确认掺杂。研究还表明,通过XPS测量证实,硼原子取代了蜂窝结构中的碳原子,其掺杂率也为2.4%。我们的研究对替代掺杂具有重要意义,该替代掺杂可使掺杂在很长一段时间内保持稳定,这对于将掺杂的石墨烯用于半导体技术(尤其是光电子学)至关重要。

更新日期:2021-01-14
down
wechat
bug