当前位置: X-MOL 学术Ocean Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Research on self-propelled performance of multi-body system of wave-driven robot
Ocean Engineering ( IF 4.6 ) Pub Date : 2021-01-07 , DOI: 10.1016/j.oceaneng.2020.108391
Weixin Zhang , Ye Li , Yulei Liao , Kaiwen Pan , Leifeng Wang

wave-driven robot is a flexible multi-body dynamic system driven by ocean waves. Self-propelled performance is an important index of wave-driven robot, which includes propulsion performance, resistance performance and rapidity of wave-driven robot, as well as its ability to capture and utilize ocean wave energy. However, the wave-driven robot belongs to flexible multi-body structure, whose dynamic model is more complex compared with conventional ocean vehicle, and the motion of wave-driven robot is completely driven by waves. It is difficult to predict its dynamic response and kinematic performance. In this paper, a numerical method is developed to solve the self-propelled process of wave-driven robot by coupling flexible multi-body dynamics and computational fluid dynamics. Firstly, the flexible multi-body dynamic model of the whole wave-driven robot is established. Secondly, the numerical flow field which can simulate regular waves is established. Finally, the dynamic model is combined with the numerical flow field, and the self-propelled process of the wave-driven robot is simulated by overlapping grid under typical wave parameters, and the propulsion performance, resistance performance and rapidity of wave-driven robot are analysed in depth. Through the test in water pool, it is found that the prediction accuracy of the velocity of float can reach 92.52%.



中文翻译:

波动机器人多体系统自推进性能研究

波浪驱动机器人是由海浪驱动的灵活的多体动力学系统。自推进性能是波浪驱动机器人的重要指标,包括波浪推进机器人的推进性能,阻力性能和快速性,以及其捕获和利用海浪能量的能力。然而,波浪驱动机器人属于柔性多体结构,其动力学模型比常规的海洋飞行器更为复杂,并且波浪驱动机器人的运动完全由波浪驱动。很难预测其动态响应和运动学性能。本文提出了一种数值方法,通过结合柔性多体动力学和计算流体动力学来解决波浪驱动机器人的自推进过程。首先,建立了整个波驱动机器人的柔性多体动力学模型。其次,建立了可以模拟规则波的数值流场。最后,将动力学模型与数值流场相结合,在典型波浪参数下,通过重叠网格对波浪驱动机器人的自推进过程进行仿真,得到了波浪机器人的推进性能,阻力性能和快速性。深入分析。通过在水池中的测试,发现浮子速度的预测精度可以达到92.52%。在典型波浪参数的基础上,通过重叠网格模拟了波浪机器人的自推进过程,并深入分析了波浪机器人的推进性能,阻力性能和快速性。通过在水池中的测试,发现浮子速度的预测精度可以达到92.52%。在典型波浪参数的基础上,通过重叠网格模拟了波浪机器人的自推进过程,并深入分析了波浪机器人的推进性能,阻力性能和快速性。通过在水池中的测试,发现浮子速度的预测精度可以达到92.52%。

更新日期:2021-01-07
down
wechat
bug