当前位置: X-MOL 学术Mech. Syst. Signal Process. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Control of a smart electro-mechanical actuator journal integrated bearing to a common equilibrium position: A simulation study
Mechanical Systems and Signal Processing ( IF 7.9 ) Pub Date : 2021-01-07 , DOI: 10.1016/j.ymssp.2020.107556
Mohamed L. Shaltout , Antoine S. Dimitri , Eric H. Maslen , Aly El-Shafei

The integration of plain journal bearings (JBs) and active magnetic bearings (AMBs) has previously been introduced as an innovative bearing concept in rotating machinery, known as smart electro-mechanical actuator journal integrated bearings (SEMAJIBs). The integrated bearing system tends to exploit the advantages and eliminate the deficiencies of each individual bearing technology. However, the integration of the two bearing technologies introduces new design and control challenges, such as operating the two bearings at a common equilibrium position. The mismatch between the equilibrium positions of the two bearings consumes both bearing load capacities leading to a load sharing problem. A novel experimentally validated control scheme has been adopted in this study to eliminate this problem and to ensure the availability of the integrated bearing load capacities. The scheme introduces a low frequency periodic biasing that enables the controller to detect non-zero static force in the AMB by sensing rotor motion at the bias carrier frequency. Consequently, the AMB controller can modify its magnetic center to match the JB equilibrium position resulting in zero static force in the AMB. Additionally, the control scheme permits the conventional control of AMBs to overcome JBs instabilities. The effectiveness of the control scheme has been demonstrated through numerical simulations using a Jeffcott rotor model supported on a pair of SEMAJIBs, for both stable and unstable operating regimes of the rotor.



中文翻译:

将智能机电执行器轴颈集成轴承控制到相同的平衡位置:仿真研究

滑动轴颈轴承(JBs)与有源电磁轴承(AMBs)的集成先前已作为旋转机械中的创新轴承概念引入,被称为智能机电致动器轴颈集成轴承(SEMAJIBs)。集成轴承系统往往会发挥其优势,并消除每种轴承技术的不足。但是,两种轴承技术的集成带来了新的设计和控制挑战,例如在共同的平衡位置操作两个轴承。两个轴承的平衡位置之间的不匹配消耗了两个轴承的负载能力,从而导致负载分配问题。在这项研究中采用了一种经过实验验证的新颖控制方案,以消除该问题并确保集成轴承负荷能力的可用性。该方案引入了低频周期性偏置,该偏置使控制器能够通过感测偏置载波频率下的转子运动来检测AMB中的非零静力。因此,AMB控制器可以修改其磁心以匹配JB平衡位置,从而在AMB中产生零静力。另外,该控制方案允许对AMB进行常规控制以克服JB的不稳定性。通过使用在一对SEMAJIB上支持的Jeffcott转子模型进行的数值模拟,证明了该控制方案的有效性,从而使转子处于稳定和不稳定的工作状态。该方案引入了低频周期性偏置,该偏置使控制器能够通过感测偏置载波频率下的转子运动来检测AMB中的非零静力。因此,AMB控制器可以修改其磁心以匹配JB平衡位置,从而在AMB中产生零静力。另外,该控制方案允许对AMB进行常规控制以克服JB的不稳定性。通过使用在一对SEMAJIB上支持的Jeffcott转子模型进行的数值模拟,证明了该控制方案的有效性,从而使转子处于稳定和不稳定的工作状态。该方案引入了低频周期性偏置,该偏置使控制器能够通过感测偏置载波频率下的转子运动来检测AMB中的非零静力。因此,AMB控制器可以修改其磁心以匹配JB平衡位置,从而在AMB中产生零静力。另外,该控制方案允许对AMB进行常规控制以克服JB的不稳定性。通过使用在一对SEMAJIB上支持的Jeffcott转子模型进行的数值模拟,证明了该控制方案的有效性,从而使转子处于稳定和不稳定的工作状态。AMB控制器可以修改其磁心以匹配JB平衡位置,从而在AMB中产生零静力。另外,该控制方案允许对AMB进行常规控制以克服JB的不稳定性。通过使用在一对SEMAJIB上支持的Jeffcott转子模型进行的数值模拟,证明了该控制方案的有效性,从而使转子处于稳定和不稳定的工作状态。AMB控制器可以修改其磁心以匹配JB平衡位置,从而在AMB中产生零静力。另外,该控制方案允许对AMB进行常规控制以克服JB的不稳定性。通过使用在一对SEMAJIB上支持的Jeffcott转子模型进行的数值模拟,证明了该控制方案的有效性,从而使转子处于稳定和不稳定的工作状态。

更新日期:2021-01-07
down
wechat
bug