当前位置: X-MOL 学术Mech. Syst. Signal Process. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Study on robust aerial docking mechanism with deep learning based drogue detection and docking
Mechanical Systems and Signal Processing ( IF 7.9 ) Pub Date : 2021-01-07 , DOI: 10.1016/j.ymssp.2020.107579
Andrew Jaeyong Choi , Hyeon-Ho Yang , Jae-Hung Han

This paper proposes a simple and a robust bistable docking system with a deep learning based real-time drogue detection and tracking system for Unmanned Aircraft Systems (UAS) for mid-air autonomous aerial docking. Secure aerial docking mechanisms between the leader and follower aerial vehicles with effective drogue detection and tracking strategies are fundamental challenges during the air-to-air docking phase of autonomous aerial docking. To confront those issues, this paper not only presents the design of a bistable-based aerial docking mechanism, but also proposes effective deep learning based real-time drogue detection using a convolutional neural network (CNN) and real-time tracking algorithm using a point cloud algorithm. To ensure novelty and robustness for the aerial docking mechanism, a foldable bistable gripper-type mechanism is designed to increase the grasping performance with simplicity and adaptability. The proposed gripper acts as a drogue by itself to grasp a probe which is attached to the follower aerial vehicle. To employ an effective drogue detection method, the deep learning based real-time object detection algorithm, YOLOv3, is used to implement the drogue detection system. The proposed new probe-and-drogue type bistable docking system has the advantages of being simple and robust. The deep learning based real-time drogue detection method increases the detection rate. Moreover, the real-time tracking algorithm with a depth camera system does not require a GPS/INS system and many other sensors to follow the drogue movement in the air.



中文翻译:

基于深度学习的锥管检测和对接的鲁棒空中对接机制研究

本文提出了一种简单而强大的双稳态对接系统,该系统具有基于深度学习的无人机半空对接系统(UAS)的实时锥套检测和跟踪系统。在自主空中对接的空对空阶段中,采用有效的锥管检测和跟踪策略,确保领导者和从动飞行器之间的空中对接机制是基本挑战。为了解决这些问题,本文不仅提出了基于双稳态的空中对接机制的设计,而且提出了使用卷积神经网络(CNN)和基于点的实时跟踪算法的有效的基于深度学习的实时锥ogue检测。云算法。为了确保对接机具新颖性和耐用性,一种可折叠的双稳态夹持器型机构设计用于以简单和适应性提高抓地性能。所提出的夹持器本身就起到了锥套的作用,以夹持连接到随动飞行器上的探针。为了采用有效的锥套检测方法,基于深度学习的实时对象检测算法YOLOv3用于实现锥套检测系统。所提出的新的探测-行进型双稳态对接系统具有简单且坚固的优点。基于深度学习的实时锥虫检测方法提高了检测率。此外,具有深度摄像头系统的实时跟踪算法不需要GPS / INS系统和许多其他传感器来跟踪空中的锥套运动。所提出的夹持器本身就起到了锥套的作用,以夹持连接到随动飞行器上的探针。为了采用有效的锥套检测方法,基于深度学习的实时对象检测算法YOLOv3用于实现锥套检测系统。所提出的新的探测-行进型双稳态对接系统具有简单且坚固的优点。基于深度学习的实时锥虫检测方法提高了检测率。此外,具有深度摄像头系统的实时跟踪算法不需要GPS / INS系统和许多其他传感器来跟踪空中的锥套运动。所提出的夹持器本身就起到了锥套的作用,以夹持连接到随动飞行器上的探针。为了采用有效的锥套检测方法,基于深度学习的实时对象检测算法YOLOv3用于实现锥套检测系统。所提出的新的探测-行进型双稳态对接系统具有简单且坚固的优点。基于深度学习的实时锥虫检测方法提高了检测率。此外,具有深度摄像头系统的实时跟踪算法不需要GPS / INS系统和许多其他传感器来跟踪空中的锥套运动。基于深度学习的实时对象检测算法YOLOv3用于实现锥套检测系统。所提出的新的探测-行进型双稳态对接系统具有简单且坚固的优点。基于深度学习的实时锥虫检测方法提高了检测率。此外,具有深度摄像头系统的实时跟踪算法不需要GPS / INS系统和许多其他传感器来跟踪空中的锥套运动。基于深度学习的实时对象检测算法YOLOv3用于实现锥套检测系统。所提出的新的探测-行进型双稳态对接系统具有简单且坚固的优点。基于深度学习的实时锥虫检测方法提高了检测率。此外,具有深度摄像头系统的实时跟踪算法不需要GPS / INS系统和许多其他传感器来跟踪空中的锥套运动。

更新日期:2021-01-07
down
wechat
bug