当前位置: X-MOL 学术J. Build. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental and theoretical analysis on rotation performance of cross-shaped joints with dowel in traditional timber structures
Journal of Building Engineering ( IF 6.7 ) Pub Date : 2021-01-07 , DOI: 10.1016/j.jobe.2021.102163
Guoqi Ren , Jianyang Xue , Dan Xu , Linlin Ma

Cross-shaped joints are the key components for Chinese traditional timber structures, which sustain vertical and lateral loads. This paper presents a comprehensive study on the seismic performance of cross-shaped joints, including experimental and theoretical analysis. The common and representative categories of cross-shaped joints with dowel were carried out under cyclic loading tests. The seismic behaviors of joints, such as the failure characteristics, hysteresis and stiffness variation, energy dissipation, and ultimate moment resisting capacity, were investigated under cyclic loading tests. This paper shows that the cross-shaped joints with dowel have higher bearing capacity than that of cross-shaped joint without dowel. In addition, the dowel has been proved to be an effective detail for substantially increasing the rotational ductility of the cross-shaped joints and restricting the extraction of the tenon. According to the structural characteristics of the joints, the moment-rotation relationships of the cross-shaped joints were also derived with the experimental results. The proposed theoretical calculation method can accurately estimate these joints moment-rotation relationship by comparing with the experimental results. Based on the theoretical model, the effect of dowel size on the rotation capacity of the joint was investigated. The results show that the rotation capacity of joint is at a higher level when the dowel size is 10∼30mm.

更新日期:2021-01-07
down
wechat
bug