当前位置: X-MOL 学术Appl. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Seasonal storage and demand side management in district heating systems with demand uncertainty
Applied Energy ( IF 10.1 ) Pub Date : 2021-01-07 , DOI: 10.1016/j.apenergy.2020.116392
Ruud Egging-Bratseth , Hanne Kauko , Brage Rugstad Knudsen , Sara Angell Bakke , Amina Ettayebi , Ina Renate Haufe

District heating is an under-researched part of the energy system, notwithstanding its enormous potential to contribute to Greenhouse Gas emission reductions. Low-temperature district heating is a key technology for energy-efficient urban heat supply as it supports an efficient utilization of low-grade waste-heat and renewable heat sources. The low operating temperature for such grids facilitates the integration of seasonal thermal energy storage, enabling a high degree of operational flexibility in the utilization of both uncontrollable and controllable heat sources. Yet, an inherent challenge of optimizing the operation of low-temperature district heating networks and its flexibility is the underlying uncertainty in heat demand. We develop a new stochastic model to minimize the total operational cost of district heating networks with local waste heat utilization, seasonal storage and uncertain demand. We consider in particular how demand side management and seasonal storage can improve the operational flexibility and thereby reduce costs. We analyze different set-ups of a local low-temperature district heating network under development in a new residential area in Trondheim, Norway. We find up to 37% reductions in carbon dioxide emissions, 29% generation reduction in peak hours, and 10% lower operational costs. These large values highlight the significance of flexibility options in low-temperature district heating networks for cost-effective, large-scale deployment.



中文翻译:

需求不确定的区域供热系统的季节性存储和需求侧管理

尽管区域供热在减少温室气体排放方面具有巨大潜力,但它仍是能源系统研究不足的部分。低温区域供热是高效节能城市供热的一项关键技术,因为它支持低级废热和可再生热源的有效利用。这样的电网的低工作温度促进了季节性热能存储的集成,从而在利用不可控和可控热源方面都具有高度的操作灵活性。然而,优化低温区域供热网络的运行及其灵活性所固有的挑战是供热的潜在不确定性。我们开发了一种新的随机模型,以最小化具有局部余热利用,季节性存储和不确定需求的区域供热网络的总运营成本。我们特别考虑需求方管理和季节性存储如何提高操作灵活性并由此降低成本。我们分析了挪威特隆赫姆市一个新居民区中正在开发的局部低温区域供热网络的不同设置。我们发现二氧化碳排放量减少了37%,高峰时段的发电量减少了29%,运营成本降低了10%。这些巨大的价值凸显了低温区域供热网络中灵活选择对于经济高效地大规模部署的重要性。我们特别考虑需求方管理和季节性存储如何提高操作灵活性并由此降低成本。我们分析了挪威特隆赫姆市一个新居民区中正在开发的局部低温区域供热网络的不同设置。我们发现二氧化碳排放量减少了37%,高峰时段的发电量减少了29%,运营成本降低了10%。这些巨大的价值凸显了低温区域供热网络中灵活选择对于经济高效地大规模部署的重要性。我们特别考虑需求方管理和季节性存储如何提高操作灵活性并由此降低成本。我们分析了挪威特隆赫姆市一个新居民区中正在开发的局部低温区域供热网络的不同设置。我们发现二氧化碳排放量减少了37%,高峰时段的发电量减少了29%,运营成本降低了10%。这些巨大的价值凸显了低温区域供热网络中灵活选择对于经济高效地大规模部署的重要性。我们发现二氧化碳排放量减少了37%,高峰时段的发电量减少了29%,运营成本降低了10%。这些巨大的价值凸显了低温区域供热网络中灵活选择对于经济高效地大规模部署的重要性。我们发现二氧化碳排放量减少了37%,高峰时段的发电量减少了29%,运营成本降低了10%。这些巨大的价值凸显了低温区域供热网络中灵活选择对于经济高效地大规模部署的重要性。

更新日期:2021-01-07
down
wechat
bug