当前位置: X-MOL 学术Rare Met. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Plate-like carbon-supported Fe3C nanoparticles with superior electrochemical performance
Rare Metals ( IF 8.8 ) Pub Date : 2021-01-07 , DOI: 10.1007/s12598-020-01653-5
Chuan Chen , Sen Qian , Tian-Hao Yao , Jing-Hong Guo , Hong-Kang Wang

Abstract Iron-based anodes for lithium-ion batteries (LIBs) with higher theoretical capacity, natural abundance and cheapness have received considerable attention, but they still suffer from the fast capacity fading. To address this issue, we report a facile synthesis of plate-like carbon-supported Fe 3 C nanoparticles through chemical blowing/carbonization under calcination. The ultrafine Fe 3 C nanoparticles are prone to be oxidized when exposing in air; thus, Fe 3 C/C with mild oxidization and the fully oxidized product of Fe 2 O 3 /C are successfully prepared by controlling the oxidization condition. When applied as an anode material in LIB, the Fe 3 C/C electrode demonstrates excellent cycle stability (826 mAh·g −1 after 120 cycles under 500 mA·g −1 ) and rate performance (410.6 mAh·g −1 under 2 A·g −1 ), compared with the Fe 2 O 3 /C counterpart. The enhanced electrochemical performance can be ascribed to the synergetic effect of the Fe 3 C with mild oxidation and the unique hierarchical structure of plate-like carbon decorated with Fe 3 C catalyst. More importantly, this work may offer new approaches to synthesize other transition metal (e.g., Co, Ni)-based anode material by replacing the precursor ingredient. Graphic abstract

中文翻译:

具有优异电化学性能的板状碳负载 Fe3C 纳米粒子

摘要 锂离子电池(LIBs)用铁基负极具有较高的理论容量、天然丰度和廉价等优点,受到了广泛关注,但仍存在容量衰减快的问题。为了解决这个问题,我们报告了一种通过化学发泡/煅烧碳化的板状碳负载 Fe 3 C 纳米颗粒的简便合成。超细Fe 3 C纳米粒子暴露在空气中容易被氧化;因此,通过控制氧化条件,成功制备了温和氧化的Fe 3 C/C和Fe 2 O 3 /C的完全氧化产物。Fe 3 C/C 电极用作锂离子电池负极材料时,表现出优异的循环稳定性(500 mA·g -1 下 120 次循环后为 826 mAh·g -1 )和倍率性能(2 次下为 410.6 mAh·g -1 ) A·g -1 ), 与 Fe 2 O 3 /C 对应物相比。增强的电化学性能可归因于温和氧化的 Fe 3 C 和 Fe 3 C 催化剂装饰的板状碳的独特分级结构的协同作用。更重要的是,这项工作可能会提供新的方法来合成其他过渡金属(例如,Co、Ni)基负极材料,通过替换前驱体成分。图形摘要
更新日期:2021-01-07
down
wechat
bug