当前位置: X-MOL 学术J. Cosmol. Astropart. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Phase transitions in an expanding universe: stochastic gravitational waves in standard and non-standard histories
Journal of Cosmology and Astroparticle Physics ( IF 5.3 ) Pub Date : 2021-01-04 , DOI: 10.1088/1475-7516/2021/01/001
Huai-Ke Guo 1 , Kuver Sinha 1 , Daniel Vagie 1 , Graham White 2
Affiliation  

We undertake a careful analysis of stochastic gravitational wave production from cosmological phase transitions in an expanding universe, studying both a standard radiation as well as a matter dominated history. We analyze in detail the dynamics of the phase transition, including the false vacuum fraction, bubble lifetime distribution, bubble number density, mean bubble separation, etc., for an expanding universe. We also study the full set of differential equations governing the evolution of plasma and the scalar field during the phase transition and generalize results obtained in Minkowski spacetime. In particular, we generalize the sound shell model to the expanding universe and determine the velocity field power spectrum. This ultimately provides an accurate calculation of the gravitational wave spectrum seen today for the dominant source of sound waves. For the amplitude of the gravitational wave spectrum visible today, we find a suppression factor arising from the finite lifetime of the sound waves and compare with the commonly used result in the literature, which corresponds to the asymptotic value of our suppression factor. We point out that the asymptotic value is only applicable for a very long lifetime of the sound waves, which is highly unlikely due to the onset of shocks, turbulence and other damping processes. We also point out that features of the gravitational wave spectral form may hold out the tantalizing possibility of distinguishing between different expansion histories using phase transitions.

中文翻译:

膨胀宇宙中的相变:标准和非标准历史中的随机引力波

我们对膨胀宇宙中宇宙相变产生的随机引力波进行了仔细分析,研究了标准辐射和物质主导的历史。我们详细分析了相变的动力学,包括膨胀宇宙的假真空分数、气泡寿命分布、气泡数密度、平均气泡分离等。我们还研究了控制相变过程中等离子体演化和标量场的全套微分方程,并概括了在闵可夫斯基时空获得的结果。特别是,我们将声壳模型推广到膨胀的宇宙并确定速度场功率谱。这最终提供了对当今主要声波源的引力波谱的准确计算。对于今天可见的引力波谱的振幅,我们找到了一个由声波有限寿命产生的抑制因子,并与文献中常用的结果进行比较,这对应于我们的抑制因子的渐近值。我们指出渐近值仅适用于声波的非常长的寿命,由于冲击、湍流和其他阻尼过程的发生,这种情况极不可能。我们还指出,引力波谱形式的特征可能提供了利用相变区分不同膨胀历史的诱人可能性。对于今天可见的引力波谱的振幅,我们找到了一个由声波有限寿命产生的抑制因子,并与文献中常用的结果进行比较,这对应于我们的抑制因子的渐近值。我们指出渐近值仅适用于声波的非常长的寿命,由于冲击、湍流和其他阻尼过程的发生,这种情况极不可能。我们还指出,引力波谱形式的特征可能提供了利用相变区分不同膨胀历史的诱人可能性。对于今天可见的引力波谱的振幅,我们找到了一个由声波有限寿命产生的抑制因子,并与文献中常用的结果进行比较,这对应于我们的抑制因子的渐近值。我们指出渐近值仅适用于声波的非常长的寿命,由于冲击、湍流和其他阻尼过程的发生,这种情况极不可能。我们还指出,引力波谱形式的特征可能提供了利用相变区分不同膨胀历史的诱人可能性。这对应于我们的抑制因子的渐近值。我们指出渐近值仅适用于声波的非常长的寿命,由于冲击、湍流和其他阻尼过程的发生,这种情况极不可能。我们还指出,引力波谱形式的特征可能提供了利用相变区分不同膨胀历史的诱人可能性。这对应于我们的抑制因子的渐近值。我们指出渐近值仅适用于声波的非常长的寿命,由于冲击、湍流和其他阻尼过程的发生,这种情况极不可能。我们还指出,引力波谱形式的特征可能提供了利用相变区分不同膨胀历史的诱人可能性。
更新日期:2021-01-04
down
wechat
bug