当前位置: X-MOL 学术ACM J. Emerg. Technol. Comput. Syst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Power Management of Monolithic 3D Manycore Chips with Inter-tier Process Variations
ACM Journal on Emerging Technologies in Computing Systems ( IF 2.1 ) Pub Date : 2021-01-06 , DOI: 10.1145/3430765
Anwesha Chatterjee 1 , Shouvik Musavvir 1 , Ryan Gary Kim 1 , Janardhan Rao Doppa 2 , Partha Pratim Pande 2
Affiliation  

Voltage/frequency island (VFI)-based power management is a popular methodology for designing energy-efficient manycore architectures without incurring significant performance overhead. However, monolithic 3D (M3D) integration has emerged as an enabling technology to design high-performance and energy-efficient circuits and systems. The smaller dimension of vertical monolithic inter-tier vias (MIVs) lowers effective wirelength and allows high integration density. However, sequential fabrication of M3D layers introduces inter-tier process variations that affect the performance of transistors and interconnects in different layers. Therefore, VFI-based power management in M3D manycore systems requires the consideration of inter-tier process variation effects. In this work, we present the design of an imitation learning (IL)-enabled VFI-based power-management strategy that considers the inter-tier process-variation effects in M3D manycore chips. We demonstrate that the IL-based power-management strategy can be fine-tuned based on the M3D characteristics. Our policy generates suitable V/F levels based on the computation and communication characteristics of the system for both process-oblivious and process-aware configurations. We show that the proposed process-variation-aware IL-based VFI implementation for M3D manycore chips lowers the overall energy-delay-product (EDP) by up to 16.2% on average compared to an ideal M3D system with no M3D process variations.

中文翻译:

具有层间工艺变化的单片 3D 众核芯片的电源管理

基于电压/频率岛 (VFI) 的电源管理是一种流行的方法,用于设计节能的众核架构,而不会产生显着的性能开销。然而,单片 3D (M3D) 集成已成为设计高性能和高能效电路和系统的一种支持技术。垂直单片层间过孔 (MIV) 的较小尺寸降低了有效线长并允许高集成密度。然而,M3D 层的顺序制造引入了层间工艺变化,这些变化会影响不同层中晶体管和互连的性能。因此,M3D 众核系统中基于 VFI 的电源管理需要考虑层间工艺变化的影响。在这项工作中,我们提出了一种基于 VFI 的基于模仿学习 (IL) 的电源管理策略的设计,该策略考虑了 M3D 众核芯片中的层间过程变化效应。我们证明了基于 IL 的电源管理策略可以根据 M3D 特性进行微调。我们的策略根据系统的计算和通信特性生成合适的 V/F 水平,用于过程不可知和过程感知配置。我们表明,与没有 M3D 工艺变化的理想 M3D 系统相比,针对 M3D 众核芯片提出的基于工艺变化感知的基于 IL 的 VFI 实施可将整体能量延迟积 (EDP) 平均降低高达 16.2%。我们证明了基于 IL 的电源管理策略可以根据 M3D 特性进行微调。我们的策略根据系统的计算和通信特性生成合适的 V/F 水平,用于过程不可知和过程感知配置。我们表明,与没有 M3D 工艺变化的理想 M3D 系统相比,针对 M3D 众核芯片提出的基于工艺变化感知的基于 IL 的 VFI 实施可将整体能量延迟积 (EDP) 平均降低高达 16.2%。我们证明了基于 IL 的电源管理策略可以根据 M3D 特性进行微调。我们的策略根据系统的计算和通信特性生成合适的 V/F 水平,用于过程不可知和过程感知配置。我们表明,与没有 M3D 工艺变化的理想 M3D 系统相比,针对 M3D 众核芯片提出的基于工艺变化感知的基于 IL 的 VFI 实施可将整体能量延迟积 (EDP) 平均降低高达 16.2%。
更新日期:2021-01-06
down
wechat
bug