当前位置: X-MOL 学术Astrobiology › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Elements for the Origin of Life on Land: A Deep-Time Perspective from the Pilbara Craton of Western Australia
Astrobiology ( IF 3.5 ) Pub Date : 2021-01-05 , DOI: 10.1089/ast.2019.2107
Martin J Van Kranendonk 1, 2 , Raphael Baumgartner 1 , Tara Djokic 1 , Tsutomu Ota 2 , Luke Steller 1 , Ulf Garbe 3 , Eizo Nakamura 2
Affiliation  

For decades, deep sea hydrothermal vents have been a preferred setting for the Origin of Life, but “The Water Problem” as relates to polymerization of organic molecules, together with a propensity to dilute critical prebiotic elements as well as a number of other crucial factors, suggests that a terrestrial hot spring field with the capacity for wetdry cycling and element concentration may represent a more likely candidate. Here, we investigate a 3.5 billion-year-old, anoxic hot spring setting from the Pilbara Craton (Australia) and show that its hydrothermal veins and compositionally varied pools and springs concentrated all of the essential elements required for prebiotic chemistry (including B, Zn, Mn, and K, in addition to C, H, N, O, P, and S). Temporal variability (seasonal to decadal), together with the known propensity of hot springs for wetdry cycling and information exchange, would lead to innovation pools with peaks of fitness for developing molecules. An inference from the chemical complexity of the Pilbara analogue is that life could perhaps get started quickly on planets with volcanoes, silicate rocks, an exposed land surface, and water, ingredients that should form the backbone in the search for life in the Universe.

中文翻译:

陆地生命起源的要素:来自西澳大利亚皮尔巴拉克拉通的深度视角

几十年来,深海热液喷口一直是生命起源的首选环境,但“水问题”与有机分子的聚合有关,以及稀释关键益生元元素的倾向以及许多其他关键因素, 表明具有湿润能力的陆地温泉场干循环和元素浓度可能代表更可能的候选者。在这里,我们调查了来自皮尔巴拉克拉通(澳大利亚)的 35 亿年前的缺氧温泉环境,并表明其热液脉和成分不同的池和泉集中了益生元化学所需的所有基本元素(包括 B、Zn 、Mn 和 K,以及 C、H、N、O、P 和 S)。时间变化(季节性到年代际),以及已知的温泉湿倾向——干循环和信息交流,将导致创新池具有适合开发分子的高峰。从皮尔巴拉类似物的化学复杂性推断,生命可能会在有火山、硅酸盐岩石、裸露的地表和水的行星上迅速开始,这些成分应该构成在宇宙中寻找生命的支柱。
更新日期:2021-01-06
down
wechat
bug