当前位置: X-MOL 学术Nature › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Design of biologically active binary protein 2D materials
Nature ( IF 50.5 ) Pub Date : 2021-01-06 , DOI: 10.1038/s41586-020-03120-8
Ariel J Ben-Sasson 1, 2 , Joseph L Watson 3 , William Sheffler 1, 2 , Matthew Camp Johnson 1 , Alice Bittleston 3 , Logeshwaran Somasundaram 4 , Justin Decarreau 1, 2 , Fang Jiao 5 , Jiajun Chen 5, 6 , Ioanna Mela 7 , Andrew A Drabek 8 , Sanchez M Jarrett 8 , Stephen C Blacklow 8, 9 , Clemens F Kaminski 7 , Greg L Hura 10 , James J De Yoreo 5, 6 , Justin M Kollman 1 , Hannele Ruohola-Baker 1, 4 , Emmanuel Derivery 3 , David Baker 1, 2, 11
Affiliation  

Ordered two-dimensional arrays such as S-layers1,2 and designed analogues3,4,5 have intrigued bioengineers6,7, but with the exception of a single lattice formed with flexible linkers8, they are constituted from just one protein component. Materials composed of two components have considerable potential advantages for modulating assembly dynamics and incorporating more complex functionality9,10,11,12. Here we describe a computational method to generate co-assembling binary layers by designing rigid interfaces between pairs of dihedral protein building blocks, and use it to design a p6m lattice. The designed array components are soluble at millimolar concentrations, but when combined at nanomolar concentrations, they rapidly assemble into nearly crystalline micrometre-scale arrays nearly identical to the computational design model in vitro and in cells without the need for a two-dimensional support. Because the material is designed from the ground up, the components can be readily functionalized and their symmetry reconfigured, enabling formation of ligand arrays with distinguishable surfaces, which we demonstrate can drive extensive receptor clustering, downstream protein recruitment and signalling. Using atomic force microscopy on supported bilayers and quantitative microscopy on living cells, we show that arrays assembled on membranes have component stoichiometry and structure similar to arrays formed in vitro, and that our material can therefore impose order onto fundamentally disordered substrates such as cell membranes. In contrast to previously characterized cell surface receptor binding assemblies such as antibodies and nanocages, which are rapidly endocytosed, we find that large arrays assembled at the cell surface suppress endocytosis in a tunable manner, with potential therapeutic relevance for extending receptor engagement and immune evasion. Our work provides a foundation for a synthetic cell biology in which multi-protein macroscale materials are designed to modulate cell responses and reshape synthetic and living systems.



中文翻译:

生物活性二元蛋白二维材料的设计

有序的二维阵列,如 S 层1,2和设计的类似物3,4,5引起了生物工程师的兴趣6,7 ,但除了由柔性接头8形成的单个晶格外,它们仅由一种蛋白质成分构成. 由两个组件组成的材料在调节装配体动力学和结合更复杂的功能9,10,11,12方面具有相当大的潜在优势。在这里,我们描述了一种计算方法,通过设计二面体蛋白质构建块对之间的刚性界面来生成共同组装的二元层,并用它来设计p 6 m格子。设计的阵列组件在毫摩尔浓度下可溶,但当以纳摩尔浓度组合时,它们会迅速组装成近乎结晶的微米级阵列,与体外和细胞内的计算设计模型几乎相同,无需二维支持。因为材料是从头开始设计的,所以组件可以很容易地功能化并重新配置它们的对称性,从而能够形成具有可区分表面的配体阵列,我们证明这可以驱动广泛的受体聚集、下游蛋白质募集和信号传导。在支持的双层上使用原子力显微镜和在活细胞上使用定量显微镜,我们表明组装在膜上的阵列具有类似于体外形成的阵列的成分化学计量和结构,因此,我们的材料可以对基本无序的基质(例如细胞膜)施加秩序。与之前表征的细胞表面受体结合组件(如抗体和纳米笼)相比,它们会被快速内吞,我们发现在细胞表面组装的大阵列以可调的方式抑制内吞作用,与延长受体结合和免疫逃避具有潜在的治疗相关性。我们的工作为合成细胞生物学奠定了基础,其中多蛋白质宏观材料旨在调节细胞反应并重塑合成和生命系统。它们被迅速内吞,我们发现在细胞表面组装的大阵列以可调的方式抑制内吞作用,对于延长受体参与和免疫逃避具有潜在的治疗相关性。我们的工作为合成细胞生物学奠定了基础,其中多蛋白质宏观材料旨在调节细胞反应并重塑合成和生命系统。它们被迅速内吞,我们发现在细胞表面组装的大阵列以可调的方式抑制内吞作用,对于延长受体参与和免疫逃避具有潜在的治疗相关性。我们的工作为合成细胞生物学奠定了基础,其中多蛋白质宏观材料旨在调节细胞反应并重塑合成和生命系统。

更新日期:2021-01-06
down
wechat
bug