当前位置: X-MOL 学术Quat. Sci. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Spatiotemporal patterns of northern lake formation since the Last Glacial Maximum
Quaternary Science Reviews ( IF 3.2 ) Pub Date : 2021-01-05 , DOI: 10.1016/j.quascirev.2020.106773
L.S. Brosius , K.M. Walter Anthony , C.C. Treat , J. Lenz , M.C. Jones , M.S. Bret-Harte , G. Grosse

The northern mid- to high-latitudes have the highest total number and area of lakes on Earth. Lake origins in these regions are diverse, but to a large extent coupled to glacial, permafrost, and peatland histories. The synthesis of 1207 northern lake initiation records presented here provides an analog for rapid landscape-level change in response to climate warming, and its subsequent attenuation by physical and biological feedback mechanisms. Our compilation reveals two peaks in northern lake formation, 13,200 and 10,400 years ago, both following rapid increases in North Atlantic air temperature. Placing our findings within the context of existing paleoenvironmental records, we suggest that solar insolation-driven changes in climate (temperature and water balance) that led to deglaciation and permafrost thaw likely contributed to high rates of northern lake formation during the last Deglacial period. However, further landscape development and stabilization dramatically reduced rates of lake formation beginning ∼10,000 years ago. This suggests that temperature alone may not control future lake development; rather, multiple factors must align to enable a landscape to respond with an increase in lake area. We propose that land surfaces strongly geared toward increased lake formation were highly conditioned by glaciation. Thus, it is unlikely that warming this century will cause lake formation as rapid or as widespread as that during the last Deglacial period.



中文翻译:

最后一次冰期以来北部湖泊形成的时空格局

北部中高纬度地区是地球上湖泊总数最多的地区。这些地区的湖泊起源多种多样,但在很大程度上与冰川,多年冻土和泥炭地的历史有关。此处介绍的1207年北部湖泊初始记录的合成为响应气候变暖及其随后的物理和生物反馈机制的衰减而快速改变景观水平提供了一个类似物。我们的汇编揭示了北湖形成中的两个高峰,分别是13200和10400年前,这两个高峰都是在北大西洋气温迅速上升之后得出的。将我们的发现放在现有的古环境记录的背景下,我们认为,由太阳日照引起的气候变化(温度和水平衡)导致了冰川的消融和多年冻土的融化,这可能导致了上一个冰期时期北部湖泊形成的速率很高。然而,进一步的景观开发和稳定化在大约10,000年前开始大大降低了湖泊形成的速度。这表明仅靠温度可能无法控制未来的湖泊发展。相反,必须综合考虑多种因素,以使景观能够随着湖泊面积的增加而作出反应。我们提出,强烈地倾向于增加湖泊形成的陆地表面受到冰川作用的高度调节。因此,本世纪的变暖不可能像上一个冰期时期那样迅速或广泛地形成湖泊。大约10,000年前开始,景观的进一步发展和稳定大大降低了湖泊形成的速度。这表明仅靠温度可能无法控制未来的湖泊发展。相反,必须综合考虑多种因素,以使景观能够随着湖泊面积的增加而作出反应。我们提出,强烈地倾向于增加湖泊形成的陆地表面受到冰川作用的高度调节。因此,本世纪的变暖不可能像上一个冰期时期那样迅速或广泛地形成湖泊。大约10,000年前开始,景观的进一步发展和稳定大大降低了湖泊形成的速度。这表明仅靠温度可能无法控制未来的湖泊发展。相反,必须综合考虑多个因素,以使景观能够随着湖泊面积的增加而做出响应。我们提出,强烈地倾向于增加湖泊形成的陆地表面受到冰川作用的高度调节。因此,本世纪的变暖不可能像上一个冰期时期那样迅速或广泛地形成湖泊。我们提出,强烈地倾向于增加湖泊形成的陆地表面受到冰川作用的高度调节。因此,本世纪的变暖不可能像上一个冰期时期那样迅速或广泛地形成湖泊。我们提出,强烈地倾向于增加湖泊形成的陆地表面受到冰川作用的高度调节。因此,本世纪的变暖不可能像上一个冰期时期那样迅速或广泛地形成湖泊。

更新日期:2021-01-06
down
wechat
bug