当前位置: X-MOL 学术Mater. Today Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On the potentiality of a cluster-beam source to produce free-standing one-dimensional and two-dimensional FeAg nanostructures: mechanisms underlying their shape genesis
Materials Today Chemistry ( IF 7.3 ) Pub Date : 2021-01-05 , DOI: 10.1016/j.mtchem.2020.100405
M. Benelmekki , V. Singh , K.W. Baughman , M. Bohra , J.-H. Kim

Controlling the morphology and composition of one-dimensional (1D) and two-dimensional (2D) assemblies of matter is essential to design and create nanostructures with exceptional material properties, for applications ranging from nanoelectronics to nanomedicine. Within this latter, a great interest is placed on assembling magnetoplasmonic nanostructures to enable multimodal biosensing and bioimaging for early diagnosis and prognosis of diseases. To date, the synthesis of such complex nanostructures is mostly relying on wet chemistry and templates. Herein, we employed a templateless physical method to generate FeAg-based anisotropic nanostructures, using a modified cluster source. Under tuned experimental conditions, we demonstrated the successful magnetic-assisted assembly of Fe nanoclusters (Fe NCs), to form stable and permanent branched Fe nanorods (Fe NRs), core@shell Fe@Ag-NRs, Fe nanosheets (Fe NSs), and Fe/Ag-NSs. This assembly is driven by the need to reduce their magnetic interaction energy on one hand and their overall surface energy on the other hand. When NCs and NRs are magnetically brought into intimate contact, they undergo a coalescence process, through the interfacial diffusion of the surface atoms, resulting in the formation of 1D and 2D nanostructures. For Fe@Ag NRs, the advantage conferred by the Ag shell is to protect Fe NRs from oxidation and prevent them from aggregation at the same time. The observed contrast reversal in Scanning Electron Microscopy (SEM) images of Fe NRs and Fe NSs is discussed.



中文翻译:

关于簇束源产生独立的一维和二维FeAg纳米结构的潜力:其形状成因的机制

控制一维(1D)和二维(2D)组件的形态和组成对于设计和创建具有卓越材料特性的纳米结构至关重要,适用于从纳米电子到纳米医学的各种应用。在后者中,人们非常关注组装磁电浆纳米结构,以实现多模式生物传感和生物成像,以用于疾病的早期诊断和预后。迄今为止,这种复杂的纳米结构的合成主要依靠湿化学和模板。在这里,我们采用了一种无模板的物理方法,使用修改后的簇源来生成基于FeAg的各向异性纳米结构。在调整的实验条件下,我们证明了Fe纳米团簇(Fe NCs)的成功磁辅助组装,形成稳定且永久的分支Fe纳米棒(Fe NRs),核@壳Fe @ Ag-NRs,Fe纳米片(Fe NSs)和Fe / Ag-NSs。这种组装是由于一方面需要减少它们的磁相互作用能而另一方面需要减少它们的总表面能而驱动的。当NC和NR磁性紧密接触时,它们会通过表面原子的界面扩散而经历合并过程,从而形成1D和2D纳米结构。对于Fe @ Ag NRs,Ag壳赋予的优点是可以保护Fe NRs免受氧化并防止它们同时聚集。讨论了在Fe NRs和Fe NSs的扫描电子显微镜(SEM)图像中观察到的对比度反转。这种组装是由于一方面需要减少它们的磁相互作用能而另一方面需要减少它们的总表面能而驱动的。当NC和NR磁性紧密接触时,它们会通过表面原子的界面扩散而经历合并过程,从而形成1D和2D纳米结构。对于Fe @ Ag NRs,Ag壳赋予的优点是可以保护Fe NRs免受氧化并防止它们同时聚集。讨论了在Fe NRs和Fe NSs的扫描电子显微镜(SEM)图像中观察到的对比度反转。这种组装是由于一方面需要减少它们的磁相互作用能而另一方面需要减少它们的总表面能而驱动的。当NC和NR磁性紧密接触时,它们会通过表面原子的界面扩散而经历合并过程,从而形成1D和2D纳米结构。对于Fe @ Ag NRs,Ag壳赋予的优点是可以保护Fe NRs免受氧化并防止它们同时聚集。讨论了在Fe NRs和Fe NSs的扫描电子显微镜(SEM)图像中观察到的对比度反转。导致形成一维和二维纳米结构。对于Fe @ Ag NRs,Ag壳赋予的优点是可以保护Fe NRs免受氧化并同时防止其聚集。讨论了在Fe NRs和Fe NSs的扫描电子显微镜(SEM)图像中观察到的对比度反转。导致形成一维和二维纳米结构。对于Fe @ Ag NRs,Ag壳赋予的优点是可以保护Fe NRs免受氧化并防止它们同时聚集。讨论了在Fe NRs和Fe NSs的扫描电子显微镜(SEM)图像中观察到的对比度反转。

更新日期:2021-01-05
down
wechat
bug