当前位置: X-MOL 学术Aerosp. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A novel aircraft anti-skid brake control method based on runway maximum friction tracking algorithm
Aerospace Science and Technology ( IF 5.0 ) Pub Date : 2021-01-06 , DOI: 10.1016/j.ast.2020.106482
Zongxia Jiao , Zhuangzhuang Wang , Dong Sun , Xiaochao Liu , Yaoxing Shang , Shuai Wu

As a dominant type of disturbance during aircraft braking, variation in maximum friction between the runway and the tires largely affects the efficiency of aircraft anti-skid braking systems (ABS). Conventional aircraft anti-skid braking control method, such as pressure-bias-modulated (PBM), are unable to identify and track the changing maximum friction between the runway and the tires, which results in reduced braking efficiency and long braking distances. This paper presents a novel anti-skid braking control method which can identify and track the maximum friction using only wheel angular velocity and brake pressure signals. An extended braking stiffness (XBS)-based runway maximum friction identification method is proposed to determine the runway maximum friction, where XBS is the differential of the friction to the differential of the slip ratio. Tracking differentiator (TD) is employed to derive the corresponding differential signals, which enables XBS to be calculated efficiently, without compromising calculation accuracy. By analyzing the dynamic characteristic of the wheel, a runway friction characteristic observation function is designed to observe changing friction characteristic during the entire braking. To be able to track the varying maximum friction in real time, a runway maximum friction tracking algorithm is designed, which can realize accurate brake pressure control according to the change in runway friction characteristic. The Lyapunov function is employed to prove the stability of the designed controller. Simulation tests are carried out under multiple sets of changes in runway friction characteristic. The comparison simulation test with PBM algorithm shows that the designed control method greatly improves the braking efficiency. Ground inertia test bench experiments are also conducted to further verify the correctness and effectiveness of the proposed aircraft anti-skid brake control method. Simulation and experiment results prove that the proposed control method is able to identify and track the varying maximum friction provided by different runways. The results of experiment also demonstrate that the control method still has good robustness and performance, even with the objective noise of the system.



中文翻译:

基于跑道最大摩擦跟踪算法的新型飞机防滑制动控制方法

作为飞机制动过程中的主要干扰类型,跑道和轮胎之间的最大摩擦力变化在很大程度上影响了飞机防滑制动系统(ABS)的效率。常规的飞机防滑制动控制方法,例如压力偏置调制(PBM),无法识别和跟踪跑道与轮胎之间变化的最大摩擦,从而导致制动效率降低和制动距离长。本文提出了一种新颖的防滑制动控制方法,该方法可以仅使用车轮角速度和制动压力信号来识别和跟踪最大摩擦。提出了一种基于扩展制动刚度(XBS)的跑道最大摩擦力识别方法,用于确定跑道最大摩擦力,其中XBS是摩擦与滑移率之差的差。跟踪微分器(TD)用于导出相应的差分信号,从而可以有效地计算XBS,而不会影响计算精度。通过分析车轮的动态特性,设计了跑道摩擦特性观察功能,以观察整个制动过程中变化的摩擦特性。为了能够实时跟踪变化的最大摩擦,设计了一种跑道最大摩擦跟踪算法,该算法可以根据跑道摩擦特性的变化实现精确的制动压力控制。利用李雅普诺夫函数来证明所设计控制器的稳定性。模拟试验是在多组跑道摩擦特性变化下进行的。与PBM算法的比较仿真测试表明,所设计的控制方法大大提高了制动效率。还进行了地面惯性试验台实验,以进一步验证所提出的飞机防滑制动控制方法的正确性和有效性。仿真和实验结果证明,所提出的控制方法能够识别和跟踪不同跑道提供的变化最大摩擦。实验结果还表明,即使存在系统噪声,该控制方法仍具有较好的鲁棒性和性能。还进行了地面惯性试验台实验,以进一步验证所提出的飞机防滑制动控制方法的正确性和有效性。仿真和实验结果证明,所提出的控制方法能够识别和跟踪不同跑道提供的变化最大摩擦。实验结果还表明,即使存在系统噪声,该控制方法仍具有较好的鲁棒性和性能。还进行了地面惯性试验台实验,以进一步验证所提出的飞机防滑制动控制方法的正确性和有效性。仿真和实验结果证明,所提出的控制方法能够识别和跟踪不同跑道提供的变化最大摩擦。实验结果还表明,即使存在系统噪声,该控制方法仍具有较好的鲁棒性和性能。

更新日期:2021-01-15
down
wechat
bug