当前位置: X-MOL 学术Metall. Mater. Trans. B. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical Study of Evaporation Behavior of Molten Manganese Metal During Electroslag Recycling Process
Metallurgical and Materials Transactions B ( IF 2.4 ) Pub Date : 2021-01-06 , DOI: 10.1007/s11663-020-02036-y
Qiang Wang , Ru Lu , Fang Wang , Zhu He , Guangqiang Li

Electroslag remelting (ESR) technology has been adopted to recycle the rejected electrolytic manganese metal scrap. In this study, a transient 3D coupled numerical model accounting for the electromagnetism, multiphase flow, heat transfer, and solidification was elaborated and used to simulate the evaporation behavior of the molten manganese metal (MM) during the ESR process. The volume of fluid approach was employed to capture the interfaces between the gaseous manganese, molten slag, and molten MM. The evaporation rate of the molten MM was defined by applying the Lee model, while the enthalpy-porosity formulation described the solidification. An industrial experiment via a commercial-scale ESR furnace was conducted for the model validation. The research findings indicate that the molten MM’s evaporation occurs during the droplet falling and in the metal pool. Then, gaseous manganese bubbles ascend to the molten slag-free surface, thus promoting the melt movement, especially the slag-metal pool interface fluctuation. The evaporation rate of the molten MM is promoted by the increased applied current and the reduced ambient gauge pressure. The recycling ratio drops from 81.75 to 71.79 pct with the applied current increase from 3000 to 4000 A and drops from 78.19 to 73.71 pct with the ambient gauge pressure reduction from 0 to − 1000 Pa.

中文翻译:

电渣回收过程中金属锰蒸发行为的数值研究

采用电渣重熔(ESR)技术回收废弃的电解锰金属废料。在本研究中,详细阐述了考虑电磁、多相流、传热和凝固的瞬态 3D 耦合数值模型,并用于模拟 ESR 过程中熔融锰金属 (MM) 的蒸发行为。采用流体体积法来捕获气态锰、熔渣和熔融 MM 之间的界面。熔融 MM 的蒸发速率是通过应用 Lee 模型定义的,而焓-孔隙率公式描述了凝固。通过商业规模的 ESR 炉进行了工业实验以进行模型验证。研究结果表明,熔融MM的蒸发发生在液滴下落和金属池中。然后,气态锰气泡上升到熔融无渣表面,从而促进熔体运动,特别是渣-金属熔池界面波动。增加的施加电流和降低的环境表压促进了熔融 MM 的蒸发速率。随着外加电流从 3000 A 增加到 4000 A,再循环率从 81.75 pct 下降到 71.79 pct,随着环境表压从 0 Pa 降低到 − 1000 Pa,再循环率从 78.19 pct 下降到 73.71 pct。增加的施加电流和降低的环境表压促进了熔融 MM 的蒸发速率。当施加的电流从 3000 增加到 4000 A 时,再循环率从 81.75 下降到 71.79%,随着环境表压从 0 降低到 - 1000 Pa,再循环率从 78.19 下降到 73.71%。增加的施加电流和降低的环境表压促进了熔融 MM 的蒸发速率。随着外加电流从 3000 A 增加到 4000 A,再循环率从 81.75 pct 下降到 71.79 pct,随着环境表压从 0 Pa 降低到 − 1000 Pa,再循环率从 78.19 pct 下降到 73.71 pct。
更新日期:2021-01-06
down
wechat
bug