当前位置: X-MOL 学术Math. Comp. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Corrigendum to “Convergence of adaptive, discontinuous Galerkin methods”
Mathematics of Computation ( IF 2 ) Pub Date : 2020-12-21 , DOI: 10.1090/mcom/3611
Christian Kreuzer , Emmanuil H. Georgoulis

Abstract:The first statement of Lemma 11 in our recent paper [KG18] (Math. Comp. 87 (2018), no. 314, 2611-2640) is incorrect: For the sequence $ \{\mathcal {G}_{k}\}_k$ of nested admissible partitions produced by the adaptive discontinuous Galerkin method (ADGM) we have $ \mathcal {G}^+\colonequals \bigcup _{k\ge 0}\bigcap _{j\ge k}\mathcal {G}_{j}$, and $ \Omega ^+\colonequals \operatorname {interior}\left (\bigcup \{ E: E\in \mathcal {G}^+\}\right )$. In the first line of the proof of [KG18, Lemma 11 on p. 2620], we used that
$\displaystyle \vert\Omega \vert=\vert\operatorname {interior}(\Omega \setminus \Omega ^+)\vert+\vert\Omega ^+\vert,$

where $ \vert\cdot \vert$ denotes the Lebesgue measure. This, however, is not true in general, since there are counter examples where $ \Omega ^+$ is dense in $ \Omega $ and
$\displaystyle 0=\vert\operatorname {interior}(\Omega \setminus \Omega ^+)\vert<\vert\Omega \setminus \Omega ^+\vert. $
Below, we present the required minor modifications to complete the proof of the main result stating convergence of the ADGM of [KG18] and address some typos regarding the broken dG-norm. A corrected full version of the article is available at arXiv:1909.12665v2.
References [Enhancements On Off] (What's this?)
  • [DGK19] A. Dominicus, F. Gaspoz, and C. Kreuzer,
    Convergence of an adaptive $ C^0$-interior penalty galerkin method for the biharmonic problem,
    1909.12665v2, 2020. Tech.report, Fakultät für Mathematik, TU Dortmund, January 2019, Ergebnisberichte des Instituts für Angewandte Mathematik, Nummer 593.
  • [KG18]


中文翻译:

“自适应,不连续Galerkin方法的收敛”更正

摘要:我们最近的论文[KG18](Math。Comp。87(2018),no.314,2611-2640)中的引理11的第一个陈述是不正确的:对于由自适应不连续Galerkin方法产生的嵌套可允许分区的序列(ADGM)我们有,和。在[KG18]证明的第一行中,引号11 p。2620],我们使用了 $ \ {\数学{G} _ {k} \} _ k $ $ \ mathcal {G} ^ + \ colonequals \ bigcup _ {k \ ge 0} \ bigcap _ {j \ ge k} \ mathcal {G} _ {j} $ $ \ Omega ^ + \ colonequals \ operatorname {interior} \ left(\ bigcup \ {E:E \ in \ mathcal {G} ^ + \} \ right)$
$ \ displaystyle \ vert \ Omega \ vert = \ vert \ operatorname {interior}(\ Omega \ setminus \ Omega ^ +)\ vert + \ vert \ Omega ^ + \ vert,$

其中$ \ vert \ cdot \ vert $表示勒贝格测度。但是,总的来说,这是不正确的,因为在一些反例$ \ Omega ^ + $$ \ Omega $
$ \ displaystyle 0 = \ vert \ operatorname {interior}(\ Omega \ setminus \ Omega ^ +)\ vert <\ vert \ Omega \ setminus \ Omega ^ + \ vert。 $
下面,我们提出所需的较小修改,以完成对证明[KG18] ADGM收敛的主要结果的证明,并解决有关dG范式破损的一些错字。可从arXiv:1909.12665v2获得本文的完整版本的更正。
参考文献[增强功能 关](这是什么?)
  • [DGK19] A. Dominicus,F。Gaspoz和C. Kreuzer,针对双谐波问题
    的自适应$ C ^ 0 $内部惩罚伽勒金方法的收敛性
    1909.12665v2,2020年。Tech.report,FakultätfürMathematik,多特蒙德大学,2019年1月,Ergebnisberichte德昂大学数学研究所(Nummer 593)。
  • [KG18]
更新日期:2021-01-05
down
wechat
bug