当前位置: X-MOL 学术SIAM J. Discret. Math. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ramsey Numbers Involving Large Books
SIAM Journal on Discrete Mathematics ( IF 0.9 ) Pub Date : 2021-01-05 , DOI: 10.1137/20m1365867
Qizhong Lin , Xiudi Liu

SIAM Journal on Discrete Mathematics, Volume 35, Issue 1, Page 23-34, January 2021.
The notion of goodness for Ramsey numbers was introduced by Burr and Erdös in 1983. For graphs $G$ and $H$, let $G+H$ be the graph obtained from disjoint $G$ and $H$ by adding all edges between the vertices of $G$ and $H$. Denote $nH$ by the union of $n$ disjoint copies of $H$. Let $B_n^{(k)}=K_k+nK_1$, which is called a book. We first obtain that if $t\ge1$ and $k\ge2$ are fixed integers and $G$ is a fixed graph, then for all large $n$, $r(K_{1,t}+G, B_n^{(k)})\le (\chi(G)+1)(n+kt-1)+1.$ This is sharp for several classes of graphs. Faudree, Rousseau, and Sheehan in 1978 proved that $q^2+q+2\le r(C_4,B_{q^2-q+1}^{(2)})\le q^2+q+4$ for prime power $q$, which implies that $B_n^{(2)}$ is not $C_4$-good for $q^2-q+1\le n\le q^2+q$. It is very difficult to determine the exact values for $r(C_4,B_{n}^{(2)})$. Moreover, Nikiforov and Rousseau in 2009 already proved that $B_n^{(k)}$ is $(K_2+C_4)$-good for fixed $k\ge 2$ and large $n$. In this paper, we obtain that for fixed $k\ge 2$ and large $n$, \scriptsize$ r(K_1+C_4, B_n^{(k)}) = \left\{ \begin{array}{ll} 2(n+2k-1) {if $n$ is even,}\\ 2(n+2k-1)+1 {if $n$ is odd.} \end{array} \right. $ This implies that $B_n^{(k)}$ is not $(K_1+C_4)$-good for each fixed $k\ge2$.


中文翻译:

涉及大书的拉姆齐数

SIAM 离散数学杂志,第 35 卷,第 1 期,第 23-34 页,2021 年 1 月。
拉姆齐数的良性概念是由 Burr 和 Erdös 在 1983 年引入的。 对于图 $G$ 和 $H$,让 $G+H$ 是通过添加之间的所有边从不相交的 $G$ 和 $H$ 获得的图$G$ 和 $H$ 的顶点。用 $H$ 的 $n$ 个不相交副本的并集表示 $nH$。设$B_n^{(k)}=K_k+nK_1$,称为一本书。我们首先得到,如果 $t\ge1$ 和 $k\ge2$ 是固定整数并且 $G$ 是一个固定图,那么对于所有大 $n$,$r(K_{1,t}+G, B_n^ {(k)})\le (\chi(G)+1)(n+kt-1)+1.$ 这对于几类图来说是尖锐的。Faudree、Rousseau 和 Sheehan 在 1978 年证明了 $q^2+q+2\le r(C_4,B_{q^2-q+1}^{(2)})\le q^2+q+4 $ 表示素数幂 $q$,这意味着 $B_n^{(2)}$ 对于 $q^2-q+1\le n\le q^2+q$ 不是 $C_4$-good。很难确定 $r(C_4,B_{n}^{(2)})$ 的确切值。而且,Nikiforov 和 Rousseau 在 2009 年已经证明 $B_n^{(k)}$ 是 $(K_2+C_4)$-对于固定 $k\ge 2$ 和大 $n$ 是好的。在本文中,我们得到对于固定 $k\ge 2$ 和大 $n$,\scriptsize$ r(K_1+C_4, B_n^{(k)}) = \left\{ \begin{array}{ll } 2(n+2k-1) {如果 $n$ 是偶数,}\\ 2(n+2k-1)+1 {如果 $n$ 是奇数。} \end{array} \right. $ 这意味着 $B_n^{(k)}$ 对于每个固定的 $k\ge2$ 不是 $(K_1+C_4)$-good。
更新日期:2021-01-05
down
wechat
bug