当前位置: X-MOL 学术Polym. Test. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modeling and experimental study of tire deformation characteristics under high-speed rolling condition
Polymer Testing ( IF 5.0 ) Pub Date : 2021-01-05 , DOI: 10.1016/j.polymertesting.2021.107052
Xueliang Gao , Yi Xiong , Weiping Liu , Ye Zhuang

Tire rolling deformation consists of valuable information for vehicle control and tire development applications. To gain insight into this deformation, both model-based and tire sensor-based approaches have been investigated in previous studies. However, existing tire models oversimplified the pressure distribution in the tire-road contact due to a lack of related experiment data especially for deformations of the tire at high rolling speeds. Meanwhile, the tire sensing method requires extensive experiments and cannot be directly used within vehicle simulations. For resolving the above issues, this paper proposes a combined approach for studying tire rolling deformation. Specifically, the flexible ring tire model (FRTM) is extended with a realistic, dynamic pressure distribution to provide more accurate predictions of the rolling tire deformation under various operation conditions. Meanwhile, a three-dimensional high-speed stereo vision system has been set up together with an optimized digital image correlation (DIC) method to measure the deformation of high-speed rolling tires. The experimental results reveal that rolling tires experience an eccentric deformation and an anti-symmetric deformation in the radial and tangential directions, respectively. Additionally, it was observed that the vertical load has a more substantial influence than the tire pressure on rolling deformation. The capability of the improved ring tire model to describe these observed phenomena has been validated through comparisons between simulations and measurements.



中文翻译:

高速滚动条件下轮胎变形特性的建模与实验研究

轮胎滚动变形包括对车辆控制和轮胎开发应用有用的信息。为了深入了解这种变形,先前的研究已经研究了基于模型和基于轮胎传感器的方法。然而,由于缺乏相关的实验数据,特别是对于在高滚动速度下的轮胎变形,现有的轮胎模型过分简化了轮胎-道路接触中的压力分布。同时,轮胎感测方法需要大量的实验,不能直接在车辆模拟中使用。为了解决上述问题,本文提出了一种用于研究轮胎滚动变形的组合方法。具体来说,柔性环轮胎模型(FRTM)扩展了逼真的,动态压力分布,以提供各种工况下滚动轮胎变形的更准确预测。同时,已经建立了三维高速立体视觉系统以及优化的数字图像相关性(DIC)方法来测量高速滚动轮胎的变形。实验结果表明,滚动轮胎在径向和切线方向分别发生偏心变形和反对称变形。另外,已经观察到,垂直载荷比轮胎压力对滚动变形具有更大的影响。改进的环形轮胎模型描述这些观察到的现象的能力已经通过模拟和测量之间的比较得到了验证。建立了三维高速立体视觉系统以及优化的数字图像相关性(DIC)方法,以测量高速滚动轮胎的变形。实验结果表明,滚动轮胎在径向和切线方向分别发生偏心变形和反对称变形。另外,已经观察到,垂直载荷比轮胎压力对滚动变形具有更大的影响。改进的环形轮胎模型描述这些观察到的现象的能力已经通过模拟和测量之间的比较得到了验证。建立了三维高速立体视觉系统以及优化的数字图像相关性(DIC)方法,以测量高速滚动轮胎的变形。实验结果表明,滚动轮胎在径向和切线方向分别发生偏心变形和反对称变形。另外,已经观察到,垂直载荷比轮胎压力对滚动变形具有更大的影响。改进的环形轮胎模型描述这些观察到的现象的能力已经通过模拟和测量之间的比较得到了验证。实验结果表明,滚动轮胎在径向和切线方向分别发生偏心变形和反对称变形。另外,已经观察到,垂直载荷比轮胎压力对滚动变形具有更大的影响。改进的环形轮胎模型描述这些观察到的现象的能力已经通过模拟和测量之间的比较得到了验证。实验结果表明,滚动轮胎在径向和切线方向分别发生偏心变形和反对称变形。另外,已经观察到,垂直载荷比轮胎压力对滚动变形具有更大的影响。改进的环形轮胎模型描述这些观察到的现象的能力已经通过模拟和测量之间的比较得到了验证。

更新日期:2021-01-05
down
wechat
bug