当前位置: X-MOL 学术Arab. J. Sci. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effective Parameter of Nano-CuO Coating on CO Gas-Sensing Performance and Heat Transfer Efficiency
Arabian Journal for Science and Engineering ( IF 2.6 ) Pub Date : 2021-01-05 , DOI: 10.1007/s13369-020-05233-8
M. H. Mahmood , M. A. Maleque

The high gas-sensing performance of semiconductors is mainly due to the high surface-to-volume ratio because it permits a large exposed surface area for gas detection. This paper presents an evaluation study for the effects of nano-CuO coating parameters on the CO gas-sensing performance. The effects on gas-sensing performance and heat transfer efficiency of CuO coating were evaluated by investigating the effects of coating parameters (concentration, temperature, and solution speed) on thickness, grain size, and porosity. The CuO nanoparticle coatings were synthesized using the oxidation method at various operating conditions. Coating characteristics were investigated using X-ray diffraction, energy dispersive X-ray Spectroscopy, field emission scanning electron microscopy, and electrical resistivity meter. The average coating thickness, grain size, and porosity were around 13 μm, 48 nm, and 30%, respectively. The thermal transfer and gas-sensing properties of CuO coating were evaluated according to the total surface area of the coating formed at various operating conditions. The gas-sensing and thermal transfer performance were obtained from the optimization of coating parameters based on the coating morphology to achieve the highest contact surface area. The coating’s surface area was increased by 350 times, which improved the heat transfer efficiency of 96.5%. The result shows that the coating thickness increased with the increase in solution concentration and decrease the temperature. The results also show that the sensitivity of the coating for CO gas was increased by 50% due to the reduction of coatings grain size.



中文翻译:

纳米CuO涂层对CO气敏性能和传热效率的有效参数

半导体的高气敏性能主要归因于高的表面体积比,因为它允许用于气体检测的较大的暴露表面积。本文对纳米CuO涂层参数对CO气敏性能的影响进行了评估研究。通过研究涂层参数(浓度,温度和溶解速度)对厚度,晶粒尺寸和孔隙率的影响,评估了对CuO涂层的气敏性能和传热效率的影响。使用氧化方法在各种操作条件下合成了CuO纳米颗粒涂层。使用X射线衍射,能量色散X射线光谱,场发射扫描电子显微镜和电阻率仪研究了涂层特性。平均涂层厚度 晶粒尺寸和孔隙率分别约为13μm,48 nm和30%。根据在各种操作条件下形成的涂层的总表面积,评估了CuO涂层的热传递和气敏特性。气体感应和热传递性能是根据涂层形态优化涂层参数以获得最大接触表面积而获得的。涂层的表面积增加了350倍,提高了96.5%的传热效率。结果表明,随着溶液浓度的增加,涂层厚度增加,温度降低。结果还表明,由于涂层粒径的减小,涂层对CO气体的敏感性提高了50%。分别。根据在各种操作条件下形成的涂层的总表面积,评估了CuO涂层的热传递和气敏特性。气体感应和热传递性能是根据涂层形态优化涂层参数以获得最大接触表面积而获得的。涂层的表面积增加了350倍,提高了96.5%的传热效率。结果表明,随着溶液浓度的增加,涂层厚度增加,温度降低。结果还表明,由于涂层粒径的减小,涂层对CO气体的敏感性提高了50%。分别。根据在各种操作条件下形成的涂层的总表面积,评估了CuO涂层的热传递和气敏特性。通过基于涂层形态的涂层参数优化来获得最大的接触表面积,从而获得了气体传感和传热性能。涂层的表面积增加了350倍,提高了96.5%的传热效率。结果表明,随着溶液浓度的增加,涂层厚度增加,温度降低。结果还表明,由于涂层粒径的减小,涂层对CO气体的敏感性提高了50%。根据在各种操作条件下形成的涂层的总表面积,评估了CuO涂层的热传递和气敏特性。通过基于涂层形态的涂层参数优化来获得最大的接触表面积,从而获得了气体传感和传热性能。涂层的表面积增加了350倍,提高了96.5%的传热效率。结果表明,随着溶液浓度的增加,涂层厚度增加,温度降低。结果还表明,由于涂层粒径的减小,涂层对CO气体的敏感性提高了50%。根据在各种操作条件下形成的涂层的总表面积,评估了CuO涂层的热传递和气敏特性。通过基于涂层形态的涂层参数优化来获得最大的接触表面积,从而获得了气体传感和传热性能。涂层的表面积增加了350倍,提高了96.5%的传热效率。结果表明,随着溶液浓度的增加,涂层厚度增加,温度降低。结果还表明,由于涂层粒径的减小,涂层对CO气体的敏感性提高了50%。通过基于涂层形态的涂层参数优化来获得最大的接触表面积,从而获得了气体传感和传热性能。涂层的表面积增加了350倍,提高了96.5%的传热效率。结果表明,随着溶液浓度的增加,涂层厚度增加,温度降低。结果还表明,由于降低了涂层的晶粒尺寸,涂层对CO气体的敏感性提高了50%。通过基于涂层形态的涂层参数优化来获得最大的接触表面积,从而获得了气体传感和传热性能。涂层的表面积增加了350倍,提高了96.5%的传热效率。结果表明,随着溶液浓度的增加,涂层厚度增加,温度降低。结果还表明,由于涂层粒径的减小,涂层对CO气体的敏感性提高了50%。结果表明,随着溶液浓度的增加,涂层厚度增加,温度降低。结果还表明,由于涂层粒径的减小,涂层对CO气体的敏感性提高了50%。结果表明,随着溶液浓度的增加,涂层厚度增加,温度降低。结果还表明,由于涂层粒径的减小,涂层对CO气体的敏感性提高了50%。

更新日期:2021-01-05
down
wechat
bug