当前位置: X-MOL 学术Adv. Atmos. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Future Precipitation Extremes in China under Climate Change and Their Physical Quantification Based on a Regional Climate Model and CMIP5 Model Simulations
Advances in Atmospheric Sciences ( IF 6.5 ) Pub Date : 2021-01-05 , DOI: 10.1007/s00376-020-0141-4
Peihua Qin , Zhenghui Xie , Jing Zou , Shuang Liu , Si Chen

The atmospheric water holding capacity will increase with temperature according to Clausius-Clapeyron scaling and affects precipitation. The rates of change in future precipitation extremes are quantified with changes in surface air temperature. Precipitation extremes in China are determined for the 21st century in six simulations using a regional climate model, RegCM4, and 17 global climate models that participated in CMIP5. First, we assess the performance of the CMIP5 models and RCM runs in their simulation of extreme precipitation for the current period (RF: 1982–2001). The CMIP5 models and RCM results can capture the spatial variations of precipitation extremes, as well as those based on observations: OBS and XPP. Precipitation extremes over four subregions in China are predicted to increase in the mid-future (MF: 2039–58) and far-future (FF: 2079–98) relative to those for the RF period based on both the CMIP5 ensemble mean and RCM ensemble mean. The secular trends in the extremes of the CMIP5 models are predicted to increase from 2008 to 2058, and the RCM results show higher interannual variability relative to that of the CMIP5 models. Then, we quantify the increasing rates of change in precipitation extremes in the MF and FF periods in the subregions of China with the changes in surface air temperature. Finally, based on the water vapor equation, changes in precipitation extremes in China for the MF and FF periods are found to correlate positively with changes in the atmospheric vertical wind multiplied by changes in surface specific humidity (significant at the p < 0.1 level).
更新日期:2021-01-05
down
wechat
bug