当前位置: X-MOL 学术npj Quantum Inform. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Emergence and control of complex behaviors in driven systems of interacting qubits with dissipation
npj Quantum Information ( IF 6.6 ) Pub Date : 2021-01-04 , DOI: 10.1038/s41534-020-00339-1
A. V. Andreev , A. G. Balanov , T. M. Fromhold , M. T. Greenaway , A. E. Hramov , W. Li , V. V. Makarov , A. M. Zagoskin

Progress in the creation of large-scale, artificial quantum coherent structures demands the investigation of their nonequilibrium dynamics when strong interactions, even between remote parts, are non-perturbative. Analysis of multiparticle quantum correlations in a large system in the presence of decoherence and external driving is especially topical. Still, the scaling behavior of dynamics and related emergent phenomena are not yet well understood. We investigate how the dynamics of a driven system of several quantum elements (e.g., qubits or Rydberg atoms) changes with increasing number of elements. Surprisingly, a two-element system exhibits chaotic behaviors. For larger system sizes, a highly stochastic, far from equilibrium, hyperchaotic regime emerges. Its complexity systematically scales with the size of the system, proportionally to the number of elements. Finally, we demonstrate that these chaotic dynamics can be efficiently controlled by a periodic driving field. The insights provided by our results indicate the possibility of a reduced description for the behavior of a large quantum system in terms of the transitions between its qualitatively different dynamical regimes. These transitions are controlled by a relatively small number of parameters, which may prove useful in the design, characterization, and control of large artificial quantum structures.



中文翻译:

耗散相互作用的量子比特驱动系统中复杂行为的出现与控制

当强大的相互作用(即使在较远的部分之间)是非微扰的时,在创建大型人工量子相干结构的过程中,需要研究其非平衡动力学。在存在退相干和外部驱动的情况下,大型系统中多粒子量子相关性的分析尤为重要。尽管如此,动力学和相关紧急现象的缩放行为还没有被很好地理解。我们研究了几个量子元素(例如,量子位或里德伯格原子)的驱动系统的动力学如何随着元素数量的增加而变化。出人意料的是,两元素系统表现出混沌行为。对于较大的系统大小,高度随机,远离均衡,超混沌政权出现了。它的复杂度与系统的大小成比例地系统地缩放,与元素的数量成比例。最后,我们证明了这些混沌动力学可以通过周期性的驱动场得到有效控制。我们的结果提供的见解表明,就大量子系统的性质不同的动力学形式之间的过渡而言,有可能减少对大型量子系统行为的描述。这些转变由相对较少的参数控制,这可能在大型人造量子结构的设计,表征和控制中被证明是有用的。

更新日期:2021-01-04
down
wechat
bug