当前位置: X-MOL 学术J. Am. Ceram. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Piezoelectric glass‐ceramics: Crystal chemistry, orientation mechanisms, and emerging applications
Journal of the American Ceramic Society ( IF 3.5 ) Pub Date : 2021-01-03 , DOI: 10.1111/jace.17680
Katy S. Gerace 1 , John C. Mauro 1, 2 , Clive A. Randall 1, 2
Affiliation  

Piezoelectric materials have coupled mechanical and electrical energies and have long been used in devices for actuators, sensors, energy harvesters, frequency filters, and various additional applications. Piezoelectricity requires a non‐centrosymmetric crystal structure and is therefore confined to materials that possess a periodic crystalline structure. Due to the non‐crystalline nature of glass, piezoelectricity is fundamentally forbidden. However, one way to exploit piezoelectric properties in a glassy matrix is by developing glass‐ceramics that possess controlled growth of a crystalline phase. Growth and orientation of piezoelectric crystals in a glassy matrix is a non‐trivial process that has long been explored to combine the formability of glass with the thermal and mechanical resilience of glass‐ceramics. While extensive work has been done in the field of functional glass‐ceramics, the results are presented in isolated articles and a comprehensive review pertaining to symmetry breaking methods to exploit anisotropic properties in glass‐ceramics has been absent from the literature. Here, we present a global review of the fundamental symmetry requirements for piezoelectricity, the development of polar, piezoelectric glass‐ceramic compositions (specifically those with LiNbO3 and fresnoite‐based crystal phases), and various crystal growth and orientation mechanisms, including relevant kinetic and thermodynamic driving forces. Lastly, we discuss the challenges associated with implementing gradients to drive oriented crystal growth to develop non‐centrosymmetry, and the need for future modeling work to produce adequate time‐temperature‐transformation (TTT) diagrams that take into account kinetic and thermodynamic driving forces for oriented crystal growth. Going beyond technical challenges, we conclude with an examination of current and potential applications for piezoelectric glass‐ceramics that combine the formability of glass with the symmetry‐dependent properties of ceramics.

中文翻译:

压电玻璃陶瓷:晶体化学,取向机制和新兴应用

压电材料具有机械能和电能的耦合,长期以来一直用于执行器,传感器,能量收集器,频率滤波器和各种其他应用的设备中。压电需要非中心对称的晶体结构,因此仅限于具有周期性晶体结构的材料。由于玻璃的非晶性,从根本上禁止压电性。但是,开发玻璃基质中压电性能的一种方法是开发具有受控晶相生长的玻璃陶瓷。在玻璃状基质中压电晶体的生长和取向是一个非平凡的过程,长期以来一直在探索将玻璃的可成型性与玻璃陶瓷的热和机械弹性相结合的过程。尽管在功能玻璃陶瓷领域已进行了广泛的工作,但结果仍在单独的文章中介绍,而文献中还缺少有关利用玻璃陶瓷各向异性特性的对称破坏方法的全面综述。在这里,我们对压电的基本对称性要求,极性压电玻璃-陶瓷组合物(特别是含LiNbO的组合物)的发展进行了全面回顾。3相和基于Fresnoite的晶相),以及各种晶体生长和取向机制,包括相关的动力学和热力学驱动力。最后,我们讨论与实现梯度以驱动定向晶体生长以发展非中心对称性相关的挑战,以及未来建模工作的必要性,以产生考虑到动力学和热力学驱动力的足够的时间-温度-转变(TTT)图。定向晶体生长。超越技术挑战,我们总结了压电玻璃陶瓷的当前和潜在应用,这些应用将玻璃的可成形性与陶瓷的对称性相结合。
更新日期:2021-03-08
down
wechat
bug