当前位置: X-MOL 学术Thin-Walled Struct. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Investigation on compression-springback behavior of metal semi-cylindrical shell in thermal environment
Thin-Walled Structures ( IF 5.7 ) Pub Date : 2021-01-04 , DOI: 10.1016/j.tws.2020.107399
Guo-Long Huang , Shao-Ting Deng , Shuai Teng , Zhen-Long Zhao , Qin Deng , Hong-liang Dai

The elastic-plastic deformation of materials provides limited displacement for metal gaskets, so as to ensure the sealing performance of flanges. In order to study the sealing performance of a novel metal gasket with a convex structure of a semi-cylindrical shell between two flanges, the compression-springback behavior of semi-cylindrical shell is investigated. By introducing the rebound and anti-coupled system consisting of the compressed body and the resilient body, meanwhile based on von Kármán nonlinear theory and Mises yield criterion, the incremental thermo-elastoplastic stress-strain constitutive relation of the semi-cylindrical shell is theoretically derived. Utilizing the finite difference method in space domain and nonlinear term iteration technique, the plastic stage problem including the semi-cylindrical shell and the sheet with flattening single-corrugated structure is solved. The influence factors of material properties, temperature, geometrical parameters of semi-cylindrical shells and cyclic loads are considered. Results show that the compression-springback behavior of nickel-based alloy is better than that of stainless steel in thermal environment, while the compression-springback behavior of stainless steel is closed to that of nickel-based alloy at room temperature. The width of semi-cylindrical shell and depth of base material significantly affect the compression-springback behavior of stainless steel. In addition, the cyclic load can cause the plastic hardening of stainless steel.



中文翻译:

金属半圆柱壳在热环境下的压缩回弹行为研究

材料的弹塑性变形为金属垫片提供了有限的位移,从而确保了法兰的密封性能。为了研究新型金属垫圈在两个法兰之间具有半圆柱壳凸形结构的密封性能,研究了半圆柱壳的压缩回弹行为。通过引入由压缩体和弹性体组成的回弹和反耦合系统,同时基于vonKármán非线性理论和Mises屈服准则,从理论上推导了半圆柱壳的增量热弹塑性应力-应变本构关系。 。利用空间域的有限差分法和非线性项迭代技术,解决了包括半圆柱壳和具有扁平单波纹结构的薄板在内的塑性阶段问题。考虑了材料特性,温度,半圆柱壳几何参数和循环载荷的影响因素。结果表明,在热环境下,镍基合金的压缩回弹行为优于不锈钢,而室温下,不锈钢的压缩回弹行为与镍基合金接近。半圆柱壳的宽度和基材的深度会显着影响不锈钢的压缩回弹行为。另外,循环载荷会引起不锈钢的塑性硬化。考虑了半圆柱壳的几何参数和循环载荷。结果表明,在热环境下,镍基合金的压缩回弹行为优于不锈钢,而室温下,不锈钢的压缩回弹行为与镍基合金接近。半圆柱壳的宽度和基材的深度会显着影响不锈钢的压缩回弹行为。另外,循环载荷会引起不锈钢的塑性硬化。考虑了半圆柱壳的几何参数和循环载荷。结果表明,在热环境下,镍基合金的压缩回弹行为优于不锈钢,而室温下,不锈钢的压缩回弹行为与镍基合金接近。半圆柱壳的宽度和基材的深度会显着影响不锈钢的压缩回弹行为。另外,循环载荷会引起不锈钢的塑性硬化。而不锈钢的压缩回弹行为在室温下接近于镍基合金。半圆柱壳的宽度和基材的深度会显着影响不锈钢的压缩回弹行为。另外,循环载荷会引起不锈钢的塑性硬化。而不锈钢的压缩回弹行为在室温下接近于镍基合金。半圆柱壳的宽度和基材的深度会显着影响不锈钢的压缩回弹行为。另外,循环载荷会引起不锈钢的塑性硬化。

更新日期:2021-01-04
down
wechat
bug